WORK PLAN TO CONDUCT NON-ENVIRONMENTAL AND ENVIRONMENTAL BROWNFIELD ACTIVITIES

Tri-County Commerce Center Project
1400 East 10 Mile Road, Hazel Park, Michigan

Hazel Park Brownfield Redevelopment Authority
111 E. Nine Mile Road, Hazel Park, Michigan
Contact: Jeff Campbell; Phone: 248-546-4060

Prepared by:
SME, 43980 Plymouth Oaks Boulevard, Plymouth, Michigan 48170
March 24, 2016 (Revised June 1, 2016)
TABLE OF CONTENTS

1.0 INTRODUCTION..1
 1.1 ELIGIBLE PROPERTY INFORMATION..1
 1.1.1 PHYSICAL LOCATION/ADDRESS ...1
 1.1.2 CURRENT OWNERSHIP ..1
 1.1.3 PROPOSED FUTURE OWNERSHIP ..1
 1.1.4 DELINQUENT TAXES, INTEREST, AND PENALTIES DUE2
 1.1.5 EXISTING AND PROPOSED FUTURE ZONING FOR EACH ELIGIBLE PROPERTY ...2
 1.2 HISTORICAL USE OF EACH ELIGIBLE PROPERTY ..2
 1.3 CURRENT USE OF EACH ELIGIBLE PROPERTY ...2
 1.4 SUMMARY OF SITE CONDITIONS AND KNOWN ENVIRONMENTAL CONTAMINATION ...2
 1.5 SUMMARY OF FUNCTIONALLY OBSOLETE AND/OR BLIGHTED CONDITIONS ...3
 1.6 SUMMARY OF PROPOSED REDEVELOPMENT & FUTURE USE FOR EACH ELIGIBLE PROPERTY ..3
 1.7 INFORMATION REQUIRED BY SECTION 15(15) OF THE STATUTE . 4
 1.7.1 SUFFICIENCY OF ELIGIBLE ACTIVITIES ..4
 1.7.2 NECESSITY OF ELIGIBLE ACTIVITIES ...5
 1.7.3 REASONABLENESS OF COSTS ..5
 1.7.4 OVERALL BENEFIT TO THE PUBLIC ...6
 1.7.5 REUSE OF VACANT BUILDINGS BE REUSED AND REDEVELOPMENT OF BLIGHTED PROPERTY ...6
 1.7.6 JOB CREATION ..6
 1.7.7 UNEMPLOYMENT IN THE AREA OF THE PROJECT NECESSITY7
 1.7.8 CONTAMINATION ALLEVIATED BY THE ELIGIBLE ACTIVITIES7
 1.7.9 LEVEL OF PRIVATE SECTOR CONTRIBUTION TO THE PROJECT7
 1.7.10 GREENFIELD SITE CONSIDERATION AND EXTRAORDINARY COSTS RELATED TO BROWNFIELD CONDITIONS ...7
 1.7.11 CREATION OF ADDITIONAL BROWNFIELDS DUE TO RELOCATION7
 1.7.12 PROJECT FINANCIAL DOCUMENTATION ...7
 1.7.13 OTHER ANTICIPATED DIRECT AND INDIRECT STATE OR LOCAL INCENTIVES..7
 1.7.14 ADDITIONAL INFORMATION FOR MSF REVIEW ...8
 2.0 SCOPE OF WORK..9
 2.1 MDEQ ELIGIBLE ACTIVITIES ..9
 2.1.1 BASELINE ENVIRONMENTAL ASSESSMENT ..9
2.1.2 DUE CARE ... 9
 2.1.2.1 DUE CARE ASSESSMENTS .. 9
 2.1.2.2 METHANE ASSESSMENTS ... 9
 2.1.2.3 METHANE MITIGATION SYSTEM DESIGN AND ENGINEERING 10
 2.1.2.4 METHANE MITIGATION SYSTEM .. 10
 2.1.2.5 8-INCH 21AA LAYER ABOVE METHANE SYSTEM TO PROTECT MEMBRANE DURING CONCRETE FLOOR CONSTRUCTION .. 11
 2.1.2.6 UPGRADED UTILITY CONSTRUCTION TO PREVENT INFILTRATION OF CONTAMINATION .. 12
 2.1.2.7 SITE WASH STATIONS TO PREVENT CONTAMINATED TRACK OUT 12
 2.1.2.8 DUE CARE DOCUMENTATION .. 12
 2.1.2.9 PROJECT MANAGEMENT AND CLOSE OUT DOCUMENTATION FOR BR AND CMI LOANS .. 12
 2.1.3 ADDITIONAL RESPONSE ACTIVITIES .. 13
 2.1.3.1 TRANSPORTATION AND DISPOSAL OF CONTAMINATED SOIL REMOVED FROM UTILITY EXCAVATIONS ... 13
 2.1.3.2 GEOGRID BENEATH PAVEMENTS IN LIEU OF REMOVING, DISPOSING, AND REPLACING CONTAMINATED FILL ... 13
 2.1.3.3 DEWATERING MANAGEMENT AND DISPOSAL ... 13
 2.1.4 ACT 381 AND DEQ CLEANUP WORK PLAN PREPARATION 14
 2.2 MSF ELIGIBLE ACTIVITIES .. 14
 2.2.1 DEMOLITION ... 14
 2.2.2 SITE PREPARATION ... 14
 2.2.2.1 GEOFLEXICAL EVALUATION .. 14
 2.2.2.2 PLACEMENT OF FILL AND MASS GRADING .. 14
 2.2.2.3 GEOFLEXICAL IN LIEU OF REMOVING, DISPOSING, AND REPLACING FILL 15
 2.2.3 PUBLIC INFRASTRUCTURE IMPROVEMENTS... 15
 2.2.3.1 WATER MAIN INFRASTRUCTURE IMPROVEMENTS 15
 2.2.3.2 COUZENS AVENUE REWORK TO INCREASE ROAD CLASSIFICATION 15
 2.2.4 ACT 381 AND DEQ CLEANUP WORK PLAN PREPARATION 15
 2.3 INTEREST ... 15
 2.4 ASSISTANCE TO A LAND BANK FAST TRACK AUTHORITY 16
 2.5 RELOCATION OF PUBLIC BUILDINGS OR OPERATIONS 16

3.0 SCHEDULE AND COSTS ... 17
 3.1 SCHEDULE OF ACTIVITIES .. 17
 3.2 ESTIMATED COSTS .. 17

FIGURES
 FIGURE 1: PROPERTY LOCATION MAP
 FIGURE 2: PROPERTY FEATURES DIAGRAM

TABLES
TABLE 1: BROWNFIELD ELIGIBLE ACTIVITIES COST SUMMARY
TABLE 2: IMPACT TO TAXING JURISDICTIONS SUMMARY

APPENDICES
APPENDIX A: BROWNFIELD PLAN AND APPROVAL RESOLUTIONS
APPENDIX B: SUMMARY OF SUBSURFACE ASSESSMENTS
APPENDIX C: SUMMARY OF PERIMETER METHANE ASSESSMENT
APPENDIX D: METHANE MITIGATION SYSTEM DESIGN DOCUMENTS
APPENDIX E: METHANE BARRIER SYSTEM BID AWARD DOCUMENTS
APPENDIX F: GEOTECHNICAL EVALUATION REPORTS
APPENDIX G: PRELIMINARY SITE PLAN AND SURVEY
APPENDIX H: GEOPIER CONSTRUCTION DOCUMENTATION
APPENDIX I: WATER MAIN IMPROVEMENT SCHEMATIC
1.0 INTRODUCTION

We prepared this Work Plan, on behalf of Tri-County Commerce Center, LLC (TCCC) and the City of Hazel Park Brownfield Redevelopment Authority (HPBRA) to secure approval from the Michigan Department of Environmental Quality (MDEQ) and Michigan Strategic Fund (MSF) for capture of school operating taxes for reimbursement of the costs for eligible environmental and non-environmental activities associated with the Tri-County Commerce Center development in the City of Hazel Park, Michigan (Property). This Work Plan was also prepared to secure MDEQ approval for the use of Brownfield Redevelopment (BR) loan and Clean Michigan Initiative (CMI) loan funds. We prepared this Work Plan pursuant to the Brownfield Redevelopment Financing Act, Act 381, Public Acts of Michigan, 1996, as amended (Act 381) and published guidance from the MDEQ and Michigan Economic Development Corporation (MEDC) dated 2013.

Costs of eligible activities will be reimbursed with tax increment financing (local and school operating taxes) captured through the HPBRA. A portion of the eligible environmental activities will be funded by a $1 million BR loan and $1 million CMI loan to the City of Hazel Park. These loan funds will be repaid with TIF captured by the HPBRA. HPBRA and the City of Hazel Park City Council approved the project Brownfield Plan for capture of local incremental taxes on November 30, 2015 and February 1, 2016, respectively. The approved Brownfield Plan and approval resolutions are included in Appendix A.

1.1 ELIGIBLE PROPERTY INFORMATION

The Property is eligible under Act 381 to be included in a Brownfield Plan and have eligible environmental and non-environmental brownfield redevelopment activities reimbursed with tax increment revenues from local and school operating taxes captured from the redeveloped Property. Results of environmental investigations conducted at the Property demonstrated that it is a “facility” as defined in Part 201 of the Natural Resources and Environmental Protection Act, Act 451 of Michigan Public Acts of 1994, as amended (Part 201).

1.1.1 PHYSICAL LOCATION/ADDRESS

The Property consists of one parcel occupying approximately 36 acres of land. The parcel has been split from an approximately 128 acre parent parcel with tax identification number 25-25-226-001 and address 1650 East 10 Mile Road, Hazel Park, Michigan. The Property was assigned address 1400 East 10 Mile Road, Hazel Park, Michigan and tax identification number 25-25-226-003. The remaining portion of the parent parcel has been assigned the new tax identification number 25-25-226-004. The Property is located at the southeast corner of East 10 Mile Road and Couzens Avenue directly south of the Interstate Highway 696 (I-696) service drive and east of I-75 at the intersection if I-696 and I-75. The legal description of the Property and a boundary survey of the parcel split are included in the Brownfield Plan provided in Appendix A. The property subject to this work plan is the full parcel split including the ROW dedication for a total of 36.2597 acres with address 1400 E. 10 Mile Road and parcel ID 25-25-226-003. The ROW dedication will be separated from the 1400 E. 10 Mile Road parcel at some future date.

1.1.2 CURRENT OWNERSHIP

The parent parcel of the Property is owned by Hazel Park Racing Association, Inc. (HPRA) located at 1650 East 10 Mile Road, Hazel Park, Michigan.

1.1.3 PROPOSED FUTURE OWNERSHIP

The Property will be split from the parent parcel and sold to TCCC who will own the Property and lease the industrial space to tenants.
1.1.4 DELINQUENT TAXES, INTEREST, AND PENALTIES DUE

There are no delinquent taxes, interest or penalties related to the Property.

1.1.5 EXISTING AND PROPOSED FUTURE ZONING FOR EACH ELIGIBLE PROPERTY

The Property is currently zoned mixed-use development (MUD), as specified in the draft, amended, development agreement between TCCC and the City of Hazel Park. The current zoning will accommodate the proposed redevelopment.

1.2 HISTORICAL USE OF EACH ELIGIBLE PROPERTY

As early as 1937, the date of earliest available historical information, the Property was undeveloped vacant or wooded land. The Property’s parent parcel was under construction in 1949 with a horse race track complex completed by 1952. The Property was developed as a parking lot to support the race track complex by that time with horse barns and other support structures on the southern portion. Prior to the horse race track development, the Property was reportedly used as a landfill for incinerator waste sometime after 1937, but was discontinued before the race track development in 1949. The parking lot on the Property was paved with asphalt since at least 1961.

1.3 CURRENT USE OF EACH ELIGIBLE PROPERTY

The Property is currently an unused parking lot associated with the Hazel Park Race Track. The southern edge of the Property is occupied by horse barns associated with the Hazel Park Race Track.

1.4 SUMMARY OF SITE CONDITIONS AND KNOWN ENVIRONMENTAL CONTAMINATION

Fill material associated with the historical landfilling operations is present at depths ranging from directly below the asphalt pavement to 14 feet below grade (BG). The fill includes gravel, wood, concrete, glass, brick, porcelain, and slag. Composite fill samples were collected from eight locations across the property at depths ranging from 3 inches to 12.5 feet below grade. Various VOCs (n-butylbenzene, sec-butylbenzene, and n-propylbenzene) and metals (arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver) were measured in the soil samples at concentrations above Part Generic Residential and/or Nonresidential Cleanup Criteria and Screening Levels (cleanup criteria). This soil/fill impact was identified across the property. Arsenic, barium, and lead were also measured in groundwater at concentrations above Part 201 Generic Residential and/or Nonresidential cleanup criteria. In addition, methane gas levels were measured in deep soil gas on the property at levels exceeding the lower explosive limit (LEL). The assessment results are summarized in the Summary of Subsurface Assessments memorandum provided as Appendix B.

In addition, the methane levels were evaluated via methane monitoring wells installed along the boundary of the Property and those results are summarized on the summary table provided in Appendix C. A figure depicting the sample locations and the boring logs summarizing the profile encountered at those locations as well as the methane well construction details are also included in Appendix C. Fill was encountered at each location to varying depths and methane was present in several locations at ranging from non-detect (0.0%) to 39.2%. The methane wells were installed with screens just above the encountered water table. We monitored the methane levels over a three month period to establish patterns at the boundary and found some locations were relatively stable over the three-month period, while others followed opposite patterns; some increased over the period while others decreased.
1.5 SUMMARY OF FUNCTIONALLY OBSOLETE AND/OR BLIGHTED CONDITIONS

No functionally obsolete or blighted conditions apply to this Work Plan.

1.6 SUMMARY OF PROPOSED REDEVELOPMENT & FUTURE USE FOR EACH ELIGIBLE PROPERTY

The development entity for the project is TCCC and is a partnership between Ashley Capital (AC) and the current site owners; the HPRA. AC is Michigan’s largest privately-held industrial real estate owner/developer. Ashley has been active in Michigan since 1992. AC has amassed a portfolio of over 22 million square feet of industrial buildings, 14 million of which is located in Michigan. Most of AC’s projects have been on a speculative basis, whereby AC identifies the market need, and moves quickly to fill it. AC’s current portfolio stands at 94% occupancy, demonstrating their strong track record and supporting their reputation as the premier developer of industrial facilities in Michigan.

The parent parcel for this redevelopment is the Hazel Park Raceway. The raceway has been an icon of the city for decades that occupies approximately 10 percent of the city’s area. Back in the 1950’s, the racetrack provided 48% of the city’s general fund and after steady decline, it now represents 2%. The project will be located on approximately 36 acres of the northwest portion of the raceway property that is currently occupied by paved surface parking that is no longer needed by the raceway and has fallen into disrepair. The project will also include the demolition of the horse barns and support structures on the southern boundary of the Property.

Prior to the construction of the raceway, the parent parcel was utilized as a landfill site. The Property location is ideally located at the epicenter of the tri-county, metropolitan Detroit area with excellent access to both Interstate Highways I-75 and I-696. In addition, the project is a classic land use success story; redeveloping already used urban land with existing infrastructure instead of creating new greenbelt development outside of urbanized areas. However, the redevelopment of the Property is hindered by the environmental and geotechnical challenges created by the previous use as landfill. The landfill material is unsuitable for construction and there are elevated levels of methane on the Property that will need to be mitigated as part of the development. The project is eligible for Act 381 Brownfield tax increment financing (TIF) because it is a “facility” and the located in the City of Hazel Park, a qualified local government unit.

TCCC sees opportunity to use the strategic location of the Property to capitalize on market need for new industrial space in the metro-Detroit area. This project will consist of a 575,000 square foot modern industrial building with an anticipated delivery date of the fourth quarter of 2016. The new building will be a state-of-the-art facility with modern dock/door ratios, lighting, ceiling heights, and fire suppression systems. The development will also have ample car parking and trailer staging areas and sufficient electrical capacity to attract light manufacturers. Project conceptual drawings are provided in the attached Brownfield Plan.

The total anticipated investment for the industrial project is approximately $36 million; creating 200 to 300 new full and part time jobs. The project is also expected to spur ancillary commercial development, which will increase property values in Hazel Park, thereby improving the tax base. The industrial park and the current and future commercial establishments in the area will benefit from increased worker traffic and increased worker spending.

Act 381 Brownfield tax increment financing on non-environmental and environmental eligible activities are a critical component of making this project a reality. In addition to TIF, the MDEQ will provide $2 million in brownfield cleanup loans to the City of Hazel Park to support the environmental response activities needed for the project. The loan will be repaid by TIF and secured with a third party repayment agreement with TCCC. In addition, the City of Hazel Park will see an immediate increased tax base
because TCCC and the City have agreed to a Brownfield Plan that will only capture 80% of the tax increment created by the project with the remaining 20% passing to the applicable taxing jurisdictions, including the state school taxes. Furthermore, TCCC is not requesting interest reimbursement on the eligible activities.

The eligible activities for the project are listed on Table 1. The impact on the taxing jurisdictions and the additional taxes anticipated to be generated by the project that won’t be captured by the Brownfield Plan for repayment of eligible activities with incremental taxes are shown on Table 2.

1.7 INFORMATION REQUIRED BY SECTION 15(15) OF THE STATUTE

Required information required by Section 15(15) of the Statute is presented in the following subsections.

1.7.1 SUFICIENCY OF ELIGIBLE ACTIVITIES

The MDEQ eligible activities are described in Section 2.1 and include baseline environmental assessment (BEA) activities, due care activities, and additional response activities. These activities are sufficient to complete the eligible activities for the following reasons:

- BEA activities including Phase I ESAs, Phase II ESAs, and BEA reports are sufficient to support TCCC’s acquisition, obtain data for liability management.

- Due care activities are sufficient to prevent human exposure to harmful contaminants, prevent exacerbation of contamination, and protect third parties who may enter the site from exposure to contaminants. Due care activities will include: preparation of the required documentation of due care compliance, management of contaminated soil and groundwater, and installation of vapor and dermal contact barriers.

- Additional response activities are sufficient to prepare the site for redevelopment. Additional response activities will include supporting the foundation system to reduce the amount of contaminated fill that must be removed and disposed to accommodate the development. These activities also include managing contaminated water that will be encountered within utility excavations in the fill.

The MSF eligible activities are described in Section 2.2 and include demolition, site preparation, and infrastructure improvements. These activities are sufficient to complete the eligible activities for the following reasons:

- Demolition activities are sufficient to remove the existing structures from the southern portion of the Property to facilitate the proposed construction. The demolition activities will also include the required lead and asbestos assessments and, if necessary, abatement.

- Site preparation activities are sufficient to prepare the site for the planned development activities (i.e. new construction).

- The planned improvements to the public infrastructure are sufficient to support the redevelopment and provide the necessary water pressure for the fire suppression system in the building.

- The improvements to the public road, Couzens Avenue, will be sufficient to allow the classification of trucks associated with the proposed development to use the road.

- Unique special foundation activities are sufficient to support the design and construction of buildings over unsuitable fill materials.
1.7.2 NECESSITY OF ELIGIBLE ACTIVITIES

The MDEQ eligible activities are described in Section 2.1 and include BEA activities, due care activities and additional response activities. The approval of these activities is necessary to make the development financially feasible. The rationale for each eligible activity is presented below:

- The BEA activities are needed to complete the eligible activities because they provide a defense to environmental liability for TCCC.

- The due care activities are needed to complete the eligible activities because they include activities required for regulatory compliance, including preparation of documentation of due care compliance, management of contaminated soil and groundwater, and protecting human health and the environment by implementing exacerbation prevention measures and installing vapor and dermal contact barriers.

- Additional response activities are necessary to support the foundation system to reduce the amount of contaminated fill that must be removed and disposed to accommodate the development. Without these activities, significant removal and disposal of contaminated fill would be required to support the pavements at the Property. The dewatering activities to manage the contaminated water within utility excavations are also necessary to comply with environmental regulations.

The MSF eligible activities are described in Section 2.2 and include demolition, site preparation, and infrastructure improvements. These eligible activities are necessary to development financially feasible. The rationale for each eligible activity is presented below:

- The demolition activities are needed to complete the eligible activities because the development cannot be constructed without removing the existing features.

- The site preparation activities are needed to complete the eligible activities because after demolition, the site must be prepared (e.g., grading, access roads, traffic control, etc.), prior to construction to facilitate the development.

- The infrastructure improvements are needed to complete the eligible activities because the development cannot be completed without the improvements described in this Work Plan (e.g. utilities and road improvements).

- The unique special foundation activities are needed to support the design and construction of access buildings over the existing, unsuitable fill materials. Without special foundations, the buildings will likely experience unacceptable levels of settlement and structural instability.

1.7.3 REASONABLENESS OF COSTS

The project design has undergone multiple iterations focused on saving costs through redesigns and value engineering. The costs for the eligible activities were based on reasonable cost estimates obtained through experience or on pre-construction estimates. The cost estimates for eligible activities were developed by TCCC’s project design team members: Ashley Capital, LLC (owner/managing member), Oliver/Hatcher Construction & Development, Inc. (construction management), Ventura & Associates Architects (architect), and SME (geotechnical, environmental, and construction consulting and engineering).
1.7.4 OVERALL BENEFIT TO THE PUBLIC

The public will benefit through the reuse of approximately 36 acres of underutilized property and creation more than 100 construction jobs and approximately 200 to 300 new full and part time jobs. Further detail of the public benefit of the project, in addition to what was described in Section 1.6 is provided below.

The Property is located in the Core Community of Hazel Park, which is also in the process of being accepted as a Main Street Community in 2015. The proposed project is an excellent opportunity for Hazel Park to revitalize one of its main commercial corridors. The project fits perfectly into Hazel Park’s recently completed Master Plan, a key component of which is improving and diversifying the City’s main corridors. In fact, Hazel Park has already issued a zoning variance to TCCC after having demonstrated to the City and the zoning authority that the project is a suitable and sustainable development at this location.

The Property is adjacent to the Hazel Park Raceway, which has been one of the City’s main attractions since the 1950s. While the race track historically drew thousands of visitors, attendance has dropped significantly since its high during the mid-70s. Betting has followed a similar negative trend, with live race betting down over 20% from 2012 to 2013, and simulcast betting down 10% over the same period. Keeping this area of the City growing and evolving is key to keeping visitors coming back and retaining residents. This project will directly support this goal by vastly improving a well-known area located along a main thoroughfare. The project will capitalize on one of Hazel Park’s greatest community assets and while it will not directly create public space, this project with its hundreds of jobs, new streetscapes and sidewalks, and improved storm water management will improve this key corridor and support the revitalization of an area that will attract residents and visitors and promote their health, happiness, and well-being.

According to 2009-2013 American Community Survey, median household incomes in the city are lower than those in Michigan and over 25% of the population works in the manufacturing, wholesale trade, and transportation/warehousing fields. This redevelopment will directly benefit the manufacturing/wholesale/warehousing trade in Hazel Park, thereby impacting a large number of workers in the city and likely increasing their incomes. In addition, the project will bring new workers and residents into the city and spur ancillary commercial development. The development will also have a huge impact on the City because of Hazel Park’s relatively small size with a population of approximately 16,500.

1.7.5 REUSE OF VACANT BUILDINGS BE REUSED AND REDEVELOPMENT OF BLIGHTED PROPERTY

The parking lot occupying the majority of the Property is no longer actively used and is in disrepair. This project will demolish the parking lot and restore the land to productive use, drastically increasing the taxable value of the Property. The horse barns and associated support structures on the southern portion of the Property will be demolished.

1.7.6 JOB CREATION

Since there are no secured tenants at the time of this Work Plan, the job numbers provided are estimates. The current estimates are over 100 construction jobs and approximately 200-300 full time and part time jobs based on Ashley Capital’s averages with other assets. The split between full and part time jobs is estimated at about 25% part time and 75% full time. Using the lower estimate of 200 total jobs with part-time jobs accounted as ½ of a full time job, we estimate a total of approximately 175 full time jobs with an average wage estimated at $16/hour will be created by the development.
1.7.7 UNEMPLOYMENT IN THE AREA OF THE PROJECT NECESSITY

Since the recent recession, the City of Hazel Park has struggled through this economic downturn with high levels of unemployment. As the overall state economy and unemployment situation has improved, Hazel Park has followed a similar trend. The current unemployment rate in the City is estimated at 4.5%, which is lower than the state average of 5.1%. Therefore, the City is not in an area of high employment.

1.7.8 CONTAMINATION ALLEVIATED BY THE ELIGIBLE ACTIVITIES

The proposed development will encapsulate the contaminated fill on the Property with limited to no removal and disposal of contaminated soil. The explosion risk associated with the methane levels present at the Property will be mitigated by a vapor mitigation system installed beneath the building. The environmental activities will also include an evaluation of the off-site migration of methane from the historical landfill.

The vapor and dermal contact barriers, which will serve as barriers to human contact with the underlying contaminated fill and groundwater and associated vapor-phase contaminants. The redevelopment project also will result in over 20 acres of impervious cover (building foundation and paved driveways and parking), which when combined with associated storm water runoff controls, will significantly reduce the amount of storm water available to leach contaminants from the fill into the underlying groundwater.

1.7.9 LEVEL OF PRIVATE SECTOR CONTRIBUTION TO THE PROJECT

TCCC estimates the investment on the project to be approximately $36 million. Approximately $9 million of that cost is anticipated to be repaid with TIF over approximately 23 years and of that cost, $2 million will be funded through the MDEQ loans to the City of Hazel Park.

1.7.10 GREENFIELD SITE CONSIDERATION AND EXTRAORDINARY COSTS RELATED TO BROWNFIELD CONDITIONS

A greenfield site was not considered because a greenfield site large enough to facilitate the proposed development was not available in the desired area. The planned project will redevelop a large, existing brownfield site into modern industrial building. The extraordinary costs for this site are related to its former use as a landfill. The majority of the costs are related to the special foundations required to support the building due to unsuitable and unconsolidated fills, the low site grade that requires substantial clean fill to match surrounding grades, and the methane conditions being generated from the former landfill.

1.7.11 CREATION OF ADDITIONAL BROWNFIELDS DUE TO RELOCATION

The project is being constructed on a speculative basis and does not have a committed tenant as of the writing of this Work Plan. This project was planned to create new industrial capacity and is therefore not anticipated to create additional brownfield sites.

1.7.12 PROJECT FINANCIAL DOCUMENTATION

TCCC’s financial documentation has been provided to MEDC under separate cover.

1.7.13 OTHER ANTICIPATED DIRECT AND INDIRECT STATE OR LOCAL INCENTIVES

In addition to the local and state TIF requested in this Work Plan, the MDEQ has awarded $2 million in brownfield cleanup loans to the City of Hazel Park to assist with environmental cleanup costs at the Property.
1.7.14 ADDITIONAL INFORMATION FOR MSF REVIEW

TCCC’s proposed redevelopment of the Property will be transformative to the City of Hazel Park. In addition, the requested TIF capture is only 80% of the available capture, which will create an immediate benefit to the taxing jurisdictions long before the eligible activities are reimbursed (without interest) in approximately 23 years.
2.0 SCOPE OF WORK

The environmental and non-environmental activities are summarized below. The cost estimates for the activities are presented on Table 1. The environmental activities whose costs are anticipated to be funded with BR and CMI loan funds are listed with their estimated budgets on Table 1. Costs paid with BR and CMI loan funds will be reimbursed with local and state school operation incremental taxes along with the remaining eligible activities funded directly by the developer.

2.1 MDEQ ELIGIBLE ACTIVITIES

MDEQ environmental eligible activities are described in the following subsections. Unless otherwise noted, the cost estimates included in this Work Plan were based on estimates developed by TCCC’s project design team.

2.1.1 BASELINE ENVIRONMENTAL ASSESSMENT

TCCC has completed a Phase I ESA and several Phase II ESAs as part of the initial due diligence on the Property. TCCC also completed a BEA prior to closing on the Property. These activities are Work Plan except for state school operating tax capture, but are included for completeness.

2.1.2 DUE CARE

Due care activities are needed at the Property to protect human health from known contaminants, to prevent exacerbation of the contamination, and to protect third parties who may enter the Property from site contaminants. Proposed due care activities include preparation of due care documentation, due care response activity planning, perimeter methane evaluations, preparation of a site-specific health and safety plan (HASP), design and installation of a methane mitigation system for the building, upgrades to utility construction to prevent exacerbation of contamination, additional training costs for contractors related to the site contamination, site wash stations to prevent track out of contaminated fill, and close out documentation for the BR and CMI loans. These activities are further described in the following subsections.

2.1.2.1 DUE CARE ASSESSMENTS

SME will perform environmental assessments to support due care planning for the project. These activities are work plan exempt and will be reimbursed with local and state school operating incremental taxes.

2.1.2.2 METHANE ASSESSMENTS

SME has performed an initial perimeter methane assessment at the Property as documented in Appendix C. The former landfill footprint appears to extend off the Property to the east and south and at least to the Property boundary on the west and north boundaries. Furthermore, methane was measured in some locations on each of the Property boundaries. SME will perform additional assessment activities to evaluate if the former landfill extent continues beyond the north and east Property boundaries. The purpose of the assessment will be to evaluate if the proposed development increases the amount of methane migrating off the Property at those boundaries. If the landfill material and methane gas is present beyond the Property boundaries, the adjoining property owners will be notified as required by Part 201. If no methane is present, TCCC will document the conditions and conduct at least four monitoring events after the building is constructed to evaluate if methane levels have increased at these boundaries. The cost of additional assessment activities will be paid with the BR and CMI loan funds. Activities completed prior to Work Plan approval will be reimbursed with local and state school operating incremental taxes as they are work plan exempt due care assessment activities.
2.1.2.3 METHANE MITIGATION SYSTEM DESIGN AND ENGINEERING

SME, Oliver/Hatcher, and Ventura have worked together to design the methane mitigation system and integrate the construction of that system into the building design. These activities were necessary for due care planning and as such are work plan exempt and will be reimbursed with local and state school operating incremental taxes.

2.1.2.4 METHANE MITIGATION SYSTEM

The Property is covered with up to 15 feet of waste material that is decomposing and generating methane. The methane conditions of the site are summarized in Appendices B and C. The fire and explosion risk associated with the presence of methane gas generation will be mitigated by passively venting the methane with a subslab collection and venting system. The system will consist of 1) passive sub-slab venting with vent risers, 2) a vapor-resistant spray-applied barrier system, and 3) injection ports to document post-installation connectivity of the venting system.

The eligible activities for funding with the BR and CMI loans will consist of designing the system, installation the system components, inspections and quality assurance and quality control (QA/QC) testing during installation, post-construction verification testing, as-built documentation, and final reporting. The activities related to the methane mitigation system are the highest priority for use of the BR and CMI loan funds and these costs will be funded prior to using excess loan balances on the additional response activities described in Section 2.1.3.

The layout of the subslab venting for the proposed system is shown on the Methane Gas Removal Venting Plan – Sheet A16 provided in Appendix D. The system includes a total of 23 vent risers and five injection ports for future QA/QC testing. The methane barrier system will be placed on top of 4-inches of 6AA gravel to provide the collection layer. The gravel collection layer will be underlain by a 21AA aggregate layer to choke the underlying fill and prevent fines from mixing with the 6AA venting layer and filling the voids in the 6AA layer over time. The system layout was designed such that the vent risers are responsible for venting independently less than 100 linear feet. The injection ports were selected for general system coverage and will be placed within the gravel bed such that the helium test gas introduced via the injection ports for post-construction testing will need to migrate through the collection layer to the vent strips and risers demonstrating connectivity of the collection layer.

The passive sub-slab venting system will consist of low-profile, interconnecting, venting strips installed within the porous 6AA gravel collection layer. The gravel layer will provide pneumatic conductivity beneath the floor slab. The venting strips will provide the preferential pathway for the vapors beneath the slab to be released safely into the atmosphere through the vent risers, which will be terminated above the roofline to prevent a buildup of contaminant vapor pressure beneath the barrier. The vent risers will also be capped with wind turbines to encourage a pressure draw from the sub-slab to the atmosphere when sufficient wind is present.

The vapor-resistant spray-applied barrier system will consist of a 5-mil Geo-Seal® FILM bottom layer with a 30-mil (dry thickness) spray-applied Geo-Seal® CORE sprayed to the bottom layer and an additional 5-mil Geo-Seal® FILM top layer placed on top of the CORE. The three-component spray-applied system will be installed in accordance with the Geo-Seal® manufacturer specifications provided in Attachment D. This modified Geo-Seal® system is similar to the traditional Geo-Seal® system with the exception that the lower BASE and upper BOND layers are replaced with the 5-mil FILM layer and the 60-mil spray-applied CORE is reduced to a 30-mil thickness. This 40-mil modified Geo-Seal® system is appropriate for the site because the higher levels of chemical resistivity of the traditional Geo-Seal® system are not necessary to create a seal to prevent the migration of methane. The 5-mil FILM layers will be protected from tearing during the construction process with woven fabric protection layers between the gravel.
collection layer and the bottom 5-mil FILM layer and another between the top 5-mill FILM layer and the overlying fill.

Due to the significant filling required at the Property to prepare the site for construction, TCCC will install the passive methane mitigation system, inclusive of the gravel collection layer and three-part methane barrier system. The passive methane mitigation system is shown on *Methane Gas Removal Venting Details – Sheet A17* provided in Appendix D. The methane mitigation system is placed just below the finished floor beneath approximately eight inches of 21AA to stabilize the concrete floor slab. This layer is discussed further in Section 2.12.5. The three-component methane barrier system will be sealed to the outer building foundation walls to provide a vapor seal and prevent infiltration of methane into the enclosed building space.

As a final layer of protection, the building will be equipped with methane monitors that will signal an alarm if methane is detected in the enclosed building space above 25% of the LEL of methane, which is equal to 1.25% by volume. The number of alarms, location, and spacing will be based on the final building layout and take into account the potential ignition sources and areas will there is a higher potential for methane to accumulate, such as utility closets and other smaller enclosed rooms.

SME will perform field inspections for the construction of the methane mitigation system to document it is built to the project and manufacturer design specifications. The QA/QC program during installation will include 1) visually inspecting the installation process, 2) collecting coupon samples from the spray-applied barrier to document appropriate thickness, 3) conducting smoke tests to identify and repair leaks in the spray-applied application, and 4) documenting the filling process directly above the barrier did not damage the underlying three-component system. We will summarize the field inspections and QA/QC as part of the project due care documentation.

The post-installation QA/QC will include a post-construction communication test that will consist of injecting helium gas through the injection ports and measuring the gas in the vent stacks to demonstrate connectivity of the collection layer with the subslab venting system. The procedures for this test will be documented in the operations and maintenance (O&M) for the system. The O&M will also include visual inspection and repairs, when necessary, of the wind turbines mounted on the vent risers. The O&M of the system is anticipated to include a post-installation and additional periodic communication tests that document the proper functioning of the venting system. The post-construction helium tests will be performed at completion of the building; one year, three years, and five years after completion; and every five years thereafter.

TCCC has bid the methane mitigation system described above and has selected S & H Waterproofing and Construction, LLC, the low-bidder, as their preferred contractor to install the system. The system installation quotes are provided in Appendix E. TCCC is requesting the MDEQ approve their preferred contractor for the methane barrier mitigation system. Certain components of the methane system, such as the placement of the 6AA venting layer will be performed by the earthwork contractor. TCCC selected Site Development, the low-bidder, as their preferred earthwork contractor for the project, which includes the placement of the 6AA layer. The earthwork bids and the bid tabulation are provided in Appendix E.

The eligible cost was estimated at $1,585,000. Of this amount, we estimate that $1,339,000 will be paid with BR and CMI loan funds.

2.1.2.5 8-INCH 21AA LAYER ABOVE METHANE SYSTEM TO PROTECT MEMBRANE DURING CONCRETE FLOOR CONSTRUCTION

In typical construction, concrete truck delivery traffic lanes would be located within the building footprint and traverse prepared subgrade with sufficient structural support to withstand the heavy loads from the concrete trucks. Due to the presence of the methane mitigation system, this traditional setup cannot be used because the heavy concrete delivery traffic will potentially destroy the integrity of the underlying membrane. To remedy this situation, the project team evaluated two options: 1) concrete pump trucks
that can deliver the concrete from sufficiently far enough to avoid travelling over areas with the membrane already installed or 2) a 21AA protection layer on top of the membrane to provide a sufficient structural layer for traditional concrete delivery traffic. The additional cost associated with pumping the concrete was estimated at $150,000 and the additional cost associated with the 21AA layer was estimated at $525,500.

The project team decided to use the 21AA layer protection layer as the preferred method to protect the membrane because of additional ancillary benefits to the construction process. The eligible costs for this activity were capped at the minimum additional cost of $150,000, with the balance not being reimbursed. Of the eligible amount of $150,000, we estimate $100,000 will be paid with BR and CMI loan funds.

2.1.2.6 UPGRADED UTILITY CONSTRUCTION TO PREVENT INFILTRATION OF CONTAMINATION

To prevent the infiltration of contaminated groundwater, the underground utilities will be upgraded with sealed joints to prevent outside groundwater from entering storm sewers and clay or bentonite plugs will be installed in the utility trenches at the Property boundary. These costs will be paid with the BR and CMI loan funds.

2.1.2.7 SITE WASH STATIONS TO PREVENT CONTAMINATED TRACK OUT

Preventative measures to address and manage the potential for exacerbation resulting from construction vehicles tracking contaminated soil off-site or dust migrating off-site are included in this Work Plan. Costs include the construction of a tire wash station and use of a street sweeper to collect soil from access roads and right-of-ways (ROWs). These costs will be paid with be reimbursed with local and state school operating incremental taxes.

2.1.2.8 DUE CARE DOCUMENTATION

Waste material and soil/fill impacted with metals pose a threat to the environment through the potential of exacerbation if not properly managed and to the health of future Site users and employees through dermal contact. Fire and explosion risks associated with the presence and/or migration of methane in gas also pose a threat to future Site users. Due care documentation for construction will be prepared to summarize how TCCC will prevent unacceptable exposures and exacerbation of existing contamination during site construction/redevelopment activities. Documentation of Due Care Compliance (DDCC) for post-construction will be prepared to document how TCCC will prevent unacceptable exposures and mitigate exacerbation of existing contamination following Site redevelopment. The DDCC will also document TCCC’s approaches to compliance with additional Part 201 Section 20107a Due Care obligations. The DDCC will also include an O&M plan for the methane mitigation system installed in the building. These costs are work plan exempt activities and will be reimbursed with local and state school operating incremental taxes.

2.1.2.9 PROJECT MANAGEMENT AND CLOSE OUT DOCUMENTATION FOR BR AND CMI LOANS

The environmental response actions involved in redeveloping this Property are numerous and complex. They will involve multiple contractors, consultants, and engineers. Monitoring, managing, and coordinating the planning, field activities, and responses to unexpected situations present significant challenges and require significant levels of effort to ensure compliance with project goals, regulatory requirements, system designs, construction restrictions, and site safety protocols. Considerable effort will be required to compile, review, verify eligibility, and approve many individual invoices and pay requests prior to submission to MDEQ for payment with BR and CMI loan funds. Each invoice and pay request will have to be allocated to the appropriate Work Plan task(s), and task and project budgets will have to carefully tracked.

Accumulated invoices, cost tracking tables, and other documentation will be collated into a form and format suitable for submission to MDEQ for loan disbursement. At the conclusion of construction
activities, final reports for the BR and CMI loans programs will be prepared as specified in guidance. It should be noted that field oversight/monitoring costs associated with specific activities (i.e., waste removal) are not included in this task. These costs are included in their respective tasks. These costs will be reimbursed with local and state school operating incremental taxes.

2.1.3 ADDITIONAL RESPONSE ACTIVITIES

Additional response activities will consist of importing clean fill to support the special foundations described in Section 2.2.2.3, placing geogrid beneath pavement areas in lieu of excavating, disposing, and replacing contaminated and unsuitable fill beneath the pavement areas, and dewatering excavations during construction and properly managing the dewatering effluent. These activities are further described in the following subsections.

2.1.3.1 TRANSPORTATION AND DISPOSAL OF CONTAMINATED SOIL REMOVED FROM UTILITY EXCAVATIONS

The new utilities at the site need to be installed at a depth that will be within the contaminated fill. In addition, the contaminated fill will be below the water table and will be unsuitable for recompacting and use on the site. There is no space on the site that can accommodate the excess soil in a greenbelt. Therefore, the soil must be properly disposed at a Type II (non-hazardous waste) landfill. The low-bid earthwork contractor selected by TCCC (Appendix E) provided a rate of $21.20/ton to transport and dispose of contaminated soil at a Type II landfill. This rate does not include excavation of the contaminated soil, which would be required to construct the utilities on a greenfield site and hence is not included as an eligible activity. The estimated quantity of contaminated soil is 40,000 tons which yields a cost estimate of $848,000. Of this amount, approximately $400,000 is anticipated to be paid with BR and CMI loan funds.

2.1.3.2 GEOGRID BENEATH PAVEMENTS IN LIEU OF REMOVING, DISPOSING, AND REPLACING CONTAMINATED FILL

The contaminated fill at the site is unsuitable to support pavements at the Property. To achieve the structural stability required to support the pavements on the site, TCCC evaluated removing and replacing the structurally unsuitable contaminated fill with engineered fill or incorporating a reinforced geogrid into the pavement cross-section. Both solutions would prepare the existing subgrade to provide sufficient load support for the anticipated truck traffic on the pavements. The pavement area on the site was estimated at approximately 525,000 square feet and the cost estimate to remove and replace the fill to prepare the pavements was estimated at $6.4 million compared to the geogrid option estimated at $130,000. This is an eligible activity because the geogrid was a much less expensive remedial alternative to disposing of the contaminated fill. Of this amount, $83,000 is included in this Work Plan as an eligible activity. This amount was included in its entirety because the eligible environmental activities in the Work Plan would exceed the amount approved in the Brownfield Plan. Of the eligible $83,000, we estimate $50,000 will be paid with BR and CMI loan funds.

2.1.3.3 DEWATERING MANAGEMENT AND DISPOSAL

Contaminated groundwater is present at the Property and will be encountered within some utility excavations. The dewatering effluent from these excavations will be discharged under permit into the sanitary sewer system. Initial testing has supported no pre-treatment of the effluent except the removal of sediments prior to discharge into the sanitary sewer. However, the discharge permit from the Detroit Water and Sewer Department (DWSD) will require testing and monitoring of the effluent to document compliance. If the testing protocols indicate direct discharge parameters are not met, TCCC will construct an on-site treatment system to pre-treat the water prior to discharge. If a system is necessary, the water will be temporarily stored in frac tanks on site prior to treatment. The estimated cost for this activity is $125,000, which has been reduced from previous estimates since an on-site treatment system does not
appear to be necessary. Of this amount, $75,000 is included in this Work Plan as an eligible activity. This amount was included in its entirety because the eligible environmental activities in the Work Plan would exceed the amount approved in the Brownfield Plan. Of the eligible $75,000, we estimate $50,000 will be paid with BR and CMI loan funds.

2.1.4 ACT 381 AND DEQ CLEANUP WORK PLAN PREPARATION

The costs to develop and prepare the Brownfield Plan and this Work Plan are work plan exempt activities and will be reimbursed with local and state school operation taxes. The costs have been split between non-environmental and environmental activities.

2.2 MSF ELIGIBLE ACTIVITIES

MSF non-environmental eligible activities are described in the following subsections. Unless otherwise noted, the cost estimates included in this Work Plan were based on estimates developed by TCCC’s project design team. The costs of these activities will be paid by TCCC and reimbursed with local and state school operating incremental taxes. Some of these activities have begun or were completed prior to Work Plan approval consistent with previous project conversations and the MEDC offer letter dated January 14, 2016.

2.2.1 DEMOLITION

The majority of the Property is occupied by the underutilized parking lot. The parking lot will pulverized in place to provide a stable platform for the geopiers. The horse bans and supporting structures located on the southern portion of the Property will be demolished to prepare the Property for redevelopment. The demolition activities will include a hazardous materials assessment of the buildings and asbestos and lead abatement, if necessary.

2.2.2 SITE PREPARATION

The site preparation activities include a geotechnical evaluation of the landfill, placement of fill and mass grading, and the special foundation system (geopiers). These activities are further described in the following subsections.

2.2.2.1 GEOTECHNICAL EVALUATION

The entire Property is occupied by a former landfill that extends to depths up to 14 feet BG. The presence of deep fill on the Property presents engineering design and construction challenges due to factors such as variable composition and compressibility. SME performed geotechnical evaluations including borings and test pits to evaluate the structure conditions of the landfill. SME also conducted geotechnical laboratory testing, evaluation of field and laboratory data, and geotechnical engineering. The information collected was evaluated and used in the design process to engineer an appropriate foundation system that would address the geotechnical and environmental conditions present at the Property. Copies of SME’s geotechnical evaluations of the Property are provided in Appendix F.

2.2.2.2 PLACEMENT OF FILL AND MASS GRADING

The current site grades are significantly lower than necessary for the proposed development. The approximately elevation in the northwest corner of the Property is 631 feet compared to the southeast corner elevation of 641 feet. After completion of the geopiers, the site will be mass graded and filled with clean fill to raise the grade to the design elevation for construction. More than 115,000 cubic yards of fill are anticipated to be required to balance the Property. The elevation of the Property is shown on the preliminary site plan and survey provided in Appendix G.
2.2.2.3 GEOPIERS IN LIEU OF REMOVING, DISPOSING, AND REPLACING FILL

The landfill material includes various amounts of gravel, wood, concrete, glass, brick, porcelain, and slag. The fill is unsuitable to structurally support traditional foundations. The project team reviewed the cost to excavate and remove the unsuitable fill and replace with engineered fill to support traditional spread footing foundations and compared that to several alternatives, the most cost effective being the installation of geopiers to improve the soil conditions sufficient to support the proposed building. The cost estimate to excavate, remove, and replace the unsuitable fill was approximately $7 million compared to the geopiers foundation system estimate of $2.4 million. The existing asphalt surface will be milled to prepare the surface, and then the geopiers will be installed in a grid pattern to improve the site soils to create sufficient bearing capacity. The geopiers will then be bridged with a fill layer and traditional spread footer foundations will be constructed on top of the engineered geopier system. This methodology will also alleviate the need to excavate and dispose of contaminated fill during the foundation construction process. The geopiers will create a suitable platform to construct the building upon using traditional spread footers in the overlying fill above the geopiers. Since the building will still use traditional spread footer foundations on top of the geopier system, the incremental cost to address the unsuitable fill is the entire cost of the geopier system itself. The geopier permit package is provided in Appendix H.

2.2.3 PUBLIC INFRASTRUCTURE IMPROVEMENTS

The public infrastructure improvements include extending three new water mains across Couzens Avenue to the Property boundary and also improving Couzens Avenue to increase the road classification. These activities are further described in the following subsections.

2.2.3.1 WATER MAIN INFRASTRUCTURE IMPROVEMENTS

The existing public water infrastructure is insufficient to supply water pressure for the fire suppression system for the building. TCCC’s team worked with the City of Hazel Park to evaluate several alternatives for extending larger nearby water mains to bring sufficient water pressure to the Property. The most cost effective option was to extend three 8-inch water mains across Couzens Avenue from the residential neighborhood west of the Property. These three 8-inch water mains will be connected to the 12-inch water main loop on the Property. The costs included in Table 1 include design and construction costs for the work in the public ROWs and exclude public water tap fees. A schematic drawing of the water main improvement plan is provided in Appendix I.

2.2.3.2 COUZENS AVENUE REWORK TO INCREASE ROAD CLASSIFICATION

The project requires a portion Couzens Avenue to be upgraded to a Class A road to support the truck traffic associated with the project. The proposed traffic would deteriorate Couzens Avenue in its current form, which is a critical public access point to 10 Mile Road and I-696. Couzens Avenue will be upgrade from 10 Mile Road south to the limits of the Property.

2.2.4 ACT 381 AND DEQ CLEANUP WORK PLAN PREPARATION

The costs to develop and prepare the Brownfield Plan and this Work Plan have been split between non-environmental and environmental activities.

2.3 INTEREST

Interest on reimbursement of eligible activities is not being pursued for this project.
2.4 ASSISTANCE TO A LAND BANK FAST TRACK AUTHORITY

This project does not include assistance to a land bank fast track authority.

2.5 RELOCATION OF PUBLIC BUILDINGS OR OPERATIONS

This project does not include relocation of public buildings or operations.
3.0 SCHEDULE AND COSTS

3.1 SCHEDULE OF ACTIVITIES

The construction activities began with the geopiers in December 2015 with geotechnical and design activities preceding construction. The BR and CMI loan activities will not take place prior to Work Plan approval. The geopiers are anticipated to be completed by early April 2016 followed by site grading. The non-environmental activities associated with the building construction, including the public infrastructure improvements, are anticipated to be completed by the end of 2016. The environmental response activities related to construction will also be completed by the end of 2016, but some reporting and close out documentation won’t be completed until the 1st Quarter of 2017.

3.2 ESTIMATED COSTS

The estimated costs for the MDEQ eligible activities and MSF eligible activities are summarized on Table 1. The impact on the taxing jurisdiction is presented on Table 2. The BR and CMI loans will be repaid with local and state school operating incremental taxes in accordance with the reimbursement agreement between TCCC and the HPBRA.

The estimated cost of MDEQ eligible activities to be reimbursed with local and state school incremental tax captures is $3,345,400, which includes the $2 million in BR and CMI loans. The estimated cost of MSF eligible activities to be reimbursed with local and state school incremental tax captures is $5,751,200. These totals include a 15% contingency calculated from the subtotaled cost of eligible activities. The cost associated with preparation of the Brownfield Plan and this Work Plan was excluded from the contingency calculation. The total estimate of eligible activities is $9,096,600.
FIGURES

FIGURE 1: PROPERTY LOCATION MAP
FIGURE 2: PROPERTY FEATURES DIAGRAM
TABLES
TABLE 1: BROWNFIELD ELIGIBLE ACTIVITIES COST SUMMARY
TABLE 2: IMPACT TO TAXING JURISDICTIONS SUMMARY
APPENDICES
APPENDIX A: BROWNFIELD PLAN AND APPROVAL RESOLUTIONS
APPENDIX B: SUMMARY OF SUBSURFACE ASSESSMENTS
APPENDIX C: SUMMARY OF PERIMETER METHANE ASSESSMENT
APPENDIX D: METHANE MITIGATION SYSTEM DESIGN DOCUMENTS
APPENDIX E: METHANE BARRIER SYSTEM BID AWARD DOCUMENTS
APPENDIX F: GEOTECHNICAL EVALUATION REPORTS
APPENDIX G: PRELIMINARY SITE PLAN AND SURVEY
APPENDIX H: GEOPIER CONSTRUCTION DOCUMENTATION
APPENDIX I WATER MAIN IMPROVEMENT SCHEMATIC
APPENDIX A
BROWNFIELD PLAN AND APPROVAL RESOLUTIONS
APPENDIX B
SUMMARY OF SUBSURFACE ASSESSMENTS
APPENDIX C
SUMMARY OF PERIMETER METHANE ASSESSMENT
APPENDIX E
METHANE BARRIER SYSTEM BID AWARD DOCUMENTS
APPENDIX F
GEOTECHNICAL EVALUATION REPORTS
APPENDIX G
PRELIMINARY SITE PLAN AND SURVEY
APPENDIX H
GEOPIER CONSTRUCTION DOCUMENTATION
APPENDIX I
WATER MAIN IMPROVEMENT SCHEMATIC
Passionate People Building and Revitalizing our World