ACT 381 WORK PLAN TO CONDUCT DEPARTMENT SPECIFIC AND MSF SPECIFIC ELIGIBLE ACTIVITIES

Tri-County Commerce Center Redevelopment Project #2 and #3 – Revision 2

1650 East 10 Mile Road, Hazel Park, Michigan
Hazel Park Brownfield Redevelopment Authority
111 E. Nine Mile Road, Hazel Park, Michigan
Contact: Jeff Campbell; Phone: 248-546-4060

Prepared by:
SME, 43980 Plymouth Oaks Boulevard, Plymouth, Michigan 48170
October 16, 2018
TABLE OF CONTENTS

1. INTRODUCTION ... 1
 1.1 PROPOSED REDEVELOPMENT AND FUTURE USE .. 1
 1.2 ELIGIBLE PROPERTY INFORMATION ... 2
 1.2.1 PROPERTY ELIGIBILITY .. 2
 1.2.2 CURRENT OWNERSHIP .. 2
 1.2.3 PROPOSED FUTURE OWNERSHIP ... 3
 1.2.4 DELINQUENT TAXES, INTEREST, AND PENALTIES DUE 3
 1.2.5 EXISTING AND PROPOSED FUTURE ZONING FOR EACH ELIGIBLE PROPERTY ... 3
 1.3 HISTORICAL USE OF EACH ELIGIBLE PROPERTY ... 3
 1.3.1 FORMER HAZEL PARK RACEWAY PARCEL ... 3
 1.3.2 HAZEL PARK BOWL PARCEL .. 3
 1.3.3 VACANT PARKING LOT PARCEL ... 3
 1.4 CURRENT USE OF EACH ELIGIBLE PROPERTY ... 4
 1.5 SUMMARY OF SITE CONDITIONS AND KNOWN ENVIRONMENTAL CONTAMINATION ... 4
 1.5.1 FORMER HAZEL PARK RACEWAY PARCEL ... 4
 1.5.2 HAZEL PARK BOWL PARCEL .. 5
 1.5.3 VACANT PARKING LOT PARCEL ... 5
 1.6 SUMMARY OF FUNCTIONALLY OBSOLETE AND/OR BLIGHTED CONDITIONS ... 5
 1.7 INFORMATION REQUIRED BY SECTION 15(15) OF THE STATUTE 5
 1.7.1 SUFFICIENCY OF ELIGIBLE ACTIVITIES ... 5
 1.7.2 NECESSITY OF ELIGIBLE ACTIVITIES ... 5
 1.7.3 REASONABLENESS OF COSTS ... 6
 1.7.4 OVERALL BENEFIT TO THE PUBLIC ... 6
 1.7.5 REUSE OF VACANT BUILDINGS AND REDEVELOPMENT OF BLIGHTED PROPERTY ... 7
 1.7.6 JOB CREATION .. 7
 1.7.7 UNEMPLOYMENT IN THE AREA OF THE PROJECT 7
 1.7.8 CONTAMINATION ALLEVIATED BY THE ELIGIBLE ACTIVITIES 7
 1.7.9 LEVEL OF PRIVATE SECTOR CONTRIBUTION TO THE PROJECT 7
 1.7.10 CREATION OF ADDITIONAL BROWNFIELDS DUE TO RELOCATION 7
 1.7.11 PROJECT FINANCIAL DOCUMENTATION ... 8
 1.7.12 OTHER ANTICIPATED DIRECT AND INDIRECT STATE OR LOCAL INCENTIVES ... 8
 1.7.13 ADDITIONAL INFORMATION FOR MSF REVIEW 8
2. SCOPE OF WORK ... 9

2.1 DEQ ELIGIBLE ACTIVITIES ... 9

2.1.1 SITE ASSESSMENT AND BASELINE ENVIRONMENTAL ASSESSMENT (BEA) ACTIVITIES ... 9

2.1.2 DUE CARE ACTIVITIES .. 9

2.1.2.1 INSTALL METHANE MITIGATION SYSTEMS ... 9

2.1.2.2 STORMWATER AND OTHER UTILITY ENGINEERING CONTROLS 11

2.1.2.3 INSTALL EXPOSURE BARRIERS FOR DERMAL CONTACT 12

2.1.2.4 EXACERBATION CONTROLS FOR CONTAMINATED SOIL 12

2.1.2.5 CONTAMINATED SOIL REMOVAL ... 12

2.1.2.6 DRAIN AND EFFLUENT TREATMENT AND DISPOSAL 12

2.1.2.7 FIELD MONITORING OF DUE CARE ACTIVITIES .. 13

2.1.2.8 WASTE CHARACTERIZATION TESTING ... 13

2.1.2.9 PROJECT COORDINATION AND MANAGEMENT ... 13

2.1.2.10 REPORTING AND DOCUMENTATION ... 13

2.1.3 INTEREST ... 14

2.1.4 BROWNFIELD PLAN AND/OR WORK PLAN PREPARATION 14

2.1.5 BROWNFIELD PLAN AND/OR WORK PLAN IMPLEMENTATION 14

2.2 MSF ELIGIBLE ACTIVITIES ... 14

2.2.1 DEMOLITION .. 14

2.2.2 LEAD ABATEMENT ... 14

2.2.3 ASBESTOS ABATEMENT .. 15

2.2.4 INFRASTRUCTURE IMPROVEMENTS ... 15

2.2.5 SITE PREPARATION ... 15

2.2.5.1 GEOTECHNICAL AND CIVIL ENGINEERING ... 15

2.2.5.2 GENERAL CONDITIONS ... 15

2.2.5.3 MASS GRADING AND SUBGRADE PREPARATION .. 15

2.2.5.4 EXCAVATION OF UNSUITABLE SOIL ... 15

2.2.5.5 SURVEYING AND STAKING ... 16

2.2.5.6 SPECIAL FOUNDATIONS (GEOPIERS) ... 16

2.2.5.7 GEOGRID UNDER PAVEMENTS ... 16

2.2.5.8 FIELD MONITORING AND CONSTRUCTION TESTING FOR ELIGIBLE ACTIVITIES ... 17

2.2.5.9 PROJECT COORDINATION AND MANAGEMENT ... 17

2.2.6 INTEREST .. 17

2.2.7 BROWNFIELD PLAN AND/OR WORK PLAN PREPARATION 17

2.2.8 BROWNFIELD PLAN AND/OR WORK PLAN IMPLEMENTATION 17

2.3 LOCAL ONLY ELIGIBLE ACTIVITIES ... 17

2.4 ELIGIBLE ACTIVITIES AND SCHEDULE .. 17

FIGURES

FIGURE 1: PROPERTY LOCATION MAP
FIGURE 2: PROPERTY FEATURES DIAGRAM
TABLES
TABLE 1A: NON-ENVIRONMENTAL ELIGIBLE ACTIVITY ESTIMATES
TABLE 1B: ENVIRONMENTAL ELIGIBLE ACTIVITY ESTIMATES
TABLE 1C: TOTAL NON-ENVIRONMENTAL AND ENVIRONMENTAL ELIGIBLE ACTIVITY ESTIMATES

TABLE 2A: IMPACT TO TAXING JURISDICTIONS SUMMARY – TCCC#2
TABLE 2B: IMPACT TO TAXING JURISDICTIONS SUMMARY – TCCC#3
TABLE 2C: IMPACT TO TAXING JURISDICTIONS SUMMARY – TCCC#2&3

TABLE 3A: TAX INCREMENTAL REVENUE ALLOCATION ESTIMATES - TCCC#2
TABLE 3B: TAX INCREMENTAL REVENUE ALLOCATION ESTIMATES - TCCC#3
TABLE 3C: TAX INCREMENTAL REVENUE ALLOCATION ESTIMATES - TCCC#2 AND TCCC#3 COMBINED

APPENDICES
APPENDIX A: BROWNFIELD PLAN AND APPROVAL RESOLUTIONS
APPENDIX B: REIMBURSEMENT AGREEMENT
APPENDIX C: SITE PLAN
APPENDIX D: LEGAL DESCRIPTIONS
APPENDIX E: ENVIRONMENTAL CONDITIONS DOCUMENTATION
APPENDIX F: VAPOR MITIGATION PLAN DETAILS
APPENDIX G: GEOTECHNICAL REPORTS
APPENDIX H: TCCC#2 CONSTRUCTION PLANS
1. INTRODUCTION

We prepared this Work Plan, on behalf of Tri-County Commerce Center 2, LLC (TCC2) and the City of Hazel Park Brownfield Redevelopment Authority (HPBRA) to secure approval from the Michigan Department of Environmental Quality (MDEQ) and Michigan Strategic Fund (MSF) for capture of school operating taxes for reimbursement of the costs for eligible environmental and non-environmental activities associated with the TCCC #2 and #3 redevelopment in the City of Hazel Park, Michigan (Property). We prepared this Plan pursuant to the Brownfield Redevelopment Financing Act, Act 381, Public Acts of Michigan, 1996, as amended (Act 381) and using the MDEQ and Michigan Economic Development Corporation (MEDC) 2017 Act 381 Work Plan Guidance, Instructions, and associated Act 381 Work Plan and TIF Table Templates.

Costs of eligible activities will be reimbursed with tax increment revenue (TIR) (local and school operating taxes) captured through the HPBRA. HPBRA and the City of Hazel Park City Council approved the project Brownfield Plan for capture of local incremental taxes on September 6 and 11, 2018, respectively. The approved Brownfield Plan and approval resolutions are included in Appendix A. The reimbursement agreement is provided in Appendix B. The site plan is provided in Appendix C.

1.1 PROPOSED REDEVELOPMENT AND FUTURE USE

The Property consists of three parcels occupying 95.73 acres of land located south of East 10 Mile Road between Couzens Avenue and Dequindre Road in Hazel Park, Michigan. The Property location and surrounding area are shown on Figure 1. The property features are shown on Figure 2. The majority of the Property was formerly associated with the Hazel Park Raceway, which closed in 2018. The three parcels of land include:

- Former Hazel Park Raceway (92.72 acres) located at 1650 East 10 Mile Road: tax identification number 28-25-25-226-004
- Hazel Park Bowl (2.60 acres) located at 24211 Hughes Avenue: tax identification number 28-25-25-251-001
- Vacant parking lot (0.41 acres) located on Oakgrove Avenue: tax identification number 28-25-25-276-001

The legal descriptions of the Property parcels are included in the Brownfield Plan provided in Appendix D.

The Property is ideally located at the epicenter of the tri-county, metropolitan Detroit area with excellent access to both Interstate Highways I-75 and I-696. TCCC#1, which adjoins the Property to the north/northwest and is located on the same historical landfill, was completed in 2017 and was successful with the help of significant local and state support with a Brownfield Plan and Work Plan. Similar to TCCC#1, the Property cannot be economically redeveloped without significant brownfield incentive support to offset the environmental and geotechnical challenges created by the former landfill conditions. Act 381 Brownfield tax increment financing on non-environmental and environmental eligible activities are a critical component of making this project a reality. In addition, the City of Hazel Park will see an immediate increased tax base because TCC2 and the City have agreed to a Brownfield Plan that will only capture 77% of the tax increment created by the project with the remaining 23% passing to the applicable taxing jurisdictions, including the state school taxes. Furthermore, TCC2 is not requesting interest reimbursement on the eligible activities.

The Property is expected to be redeveloped in two phases. The first phase will consist of demolition of the existing features of the entire Property and preliminary site preparation. TCCC#2 will be developed first with an approximately 650,000 square-foot modern, flexible, high-bay, multi-tenant industrial building. The TCC#2 portion of the development will include the western half of the former raceway parcel and the former bowling alley parcel. TCC#3 will be developed second with an approximately 840,000
square-foot building similar to TCCC#2. The TCCC#3 portion of the development will include the eastern half of the former raceway parcel and the vacant parking lot parcel. As part of the development, the public right-of-ways (ROWs) Couzens Avenue (approximately 45,960 square feet) and Oakgrove Avenue (approximately 28,050 square feet) are planned to be improved to support the increased heavy truck traffic.

The total anticipated investment is $85 million ($37 million for TCCC#2 and $48 million for TCC#3), which includes approximately $51 million in private investment and $34 million in reimbursable environmental and non-environmental eligible activities. The TCCC#2 portion of the project is estimated to create 263 new full-time equivalent (FTE) jobs, and the TCCC#3 portion of the project is estimated to create 350 new FTE jobs. The eligible activities included in this plan will be completed in phases starting in 2018 and the redevelopment is expected to be fully completed 2022. The redevelopment activities are expected to result in an approximately $22 million increase in taxable value at completion as well as spur ancillary commercial development that will further increase property tax values in Hazel Park. Hazel Park is a qualified local governmental unit (QLGU).

1.2 ELIGIBLE PROPERTY INFORMATION

The Property is eligible under Act 381 to be included in a Brownfield Plan and have eligible environmental and non-environmental brownfield redevelopment activities reimbursed with tax increment revenues from local and school operating taxes captured from the redeveloped Property.

1.2.1 PROPERTY ELIGIBILITY

The Property includes the following three parcels of land, each of which are “facilities” as defined in Part 201 of the Natural Resources and Environmental Protection Act, Act 451 of Michigan Public Acts of 1994, as amended (Part 201).

<table>
<thead>
<tr>
<th>PARCEL ID</th>
<th>ADDRESS</th>
<th>APPROXIMATE PARCEL SIZE</th>
<th>BASIS OF ELIGIBILITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>28-25-25-226-004 (former Hazel Park Raceway)</td>
<td>1650 East 10 Mile Road</td>
<td>92.72 acres</td>
<td>Facility</td>
</tr>
<tr>
<td>28-25-25-251-001 (Hazel Park Bowl)</td>
<td>24211 Hughes Avenue</td>
<td>2.6 acres</td>
<td>Facility</td>
</tr>
<tr>
<td>28-25-25-276-001 (vacant parking lot)</td>
<td>Oakgrove Avenue</td>
<td>0.41 acres</td>
<td>Facility</td>
</tr>
</tbody>
</table>

The parcel boundaries and Property features are shown on the ALTA surveys and legal descriptions of the Property included in Appendix D.

1.2.2 CURRENT OWNERSHIP

The three parcels included in the Property are owned by Tri-County Commerce Center 2, LLC (TCC2) located at 1650 East 10 Mile Road, Hazel Park, Michigan 48030. Prior to transfer to TCC2, the Property was briefly owned by a holding entity Hazel Park Holdings II, LLC located at 2575 S. Haggerty, Suite 500, Canton, Michigan 48188. The contact person for both entities is Susan Harvey, Senior Vice President 734-394-1900; sharvey@ashleycapital.com.
1.2.3 PROPOSED FUTURE OWNERSHIP

TCC2 will own the Property and lease the industrial spaces to tenants. TCC2 is expected to transfer to a new entity called TCC3 at the time the building development occurs on TCCC#3.

1.2.4 DELINQUENT TAXES, INTEREST, AND PENALTIES DUE

There are no delinquent taxes, interest or penalties related to the Property.

1.2.5 EXISTING AND PROPOSED FUTURE ZONING FOR EACH ELIGIBLE PROPERTY

The Property is currently zoned mixed-use/entertainment (M-D). The current zoning will accommodate the proposed redevelopment. The Hazel Park zoning map is provided in Appendix D.

1.3 HISTORICAL USE OF EACH ELIGIBLE PROPERTY

1.3.1 FORMER HAZEL PARK RACEWAY PARCEL

The raceway parcel was depicted as undeveloped in the topographic maps dated 1905 through 1934. As early as 1937, the majority the parcel consisted of undeveloped vacant or wooded land. Portions of the Property and adjoining sites were reportedly used as a landfill for incinerator waste from sometime after 1937 until sometime before race track development in 1949. The race track included several support buildings that were progressively and/or replaced added over the years. They included the grand stand, stables, storage barns, a club house, and a maintenance building. The large pond on the eastern portion of the parcel was created by 1967. A 2,000-gallon gasoline UST was installed east of the maintenance building in 1982. A gasoline release was reported during the October 1992 removal of the tank. The release was granted an unrestricted residential closure, but residual contamination was left in place. The raceway ceased operations in 2018. The contamination at the site impeding the development and necessitating the Brownfield Plan and this Work Plan are related to the landfill conditions, which occurred prior to the raceway development and for which there is no known liable party.

1.3.2 HAZEL PARK BOWL PARCEL

The parcel was agricultural in use from at least 1937 through 1940 with potential landfilling activities associated with the north-adjoining site extending to the northern portion of the Property. Between 1949 through 1956, the Property was cleared of vegetation and disturbed earth associated with the construction of the north-adjoining former Hazel Park Raceway. The Property was developed with the existing 22,400-square foot Hazel Park Bowl in 1962. The bowling alley ceased operation in 2018. Contamination on the parcel appears to be related to fill that predates the construction of the bowling alley.

1.3.3 VACANT PARKING LOT PARCEL

The parcel was a vacant and wooded lot prior the development of the Property for residential use between 1937 and 1940 under the historical address of 1759 Oak Grove Avenue. Three residential structures located along the northern portion of the Property were demolished between 1968 and 1972. The Property has been remained an asphalt-paved lot since 1972. Contamination at the parcel appears to be related to fill that predates the construction of the parking lot.
1.4 CURRENT USE OF EACH ELIGIBLE PROPERTY

The Hazel Park Raceway and Hazel Park Bowl closed in 2018. The parcels are currently undergoing demolition and site preparation activities to support the TCCC2 and TCCC3 redevelopments. The vacant parking lot parcel is unused pending this redevelopment.

1.5 SUMMARY OF SITE CONDITIONS AND KNOWN ENVIRONMENTAL CONTAMINATION

Multiple environmental investigations of the Property were completed between 2015 and 2018, and SME conducted BEAs for each of the three Property parcels. These BEAs have been conducted to secure liability protection for TCC2 and are being submitted to the MDEQ under separate cover. The BEAs provide greater detail regarding the site history, site conditions, and the results of the environmental investigations:

- **Baseline Environmental Assessment, Liberty Park, Tri-County Commerce Center 2 and 3, 1650 East 10 Mile Road, Hazel Park, Michigan**, dated May 25, 2018.

- **Baseline Environmental Assessment, 0.41-Acre Lot, Oakgrove Avenue, Hazel Park, Michigan**, dated July 31, 2018.

According to these BEAs and referenced documents therein, the historical landfilling operations appear to have occurred on the entire Hazel Park Raceway parcel and the northern portion of the Hazel Park Bowl parcel, and did not extend onto the Vacant Parking Lot parcel. The landfill is primarily a sandy clay matrix containing significant quantities of debris such as wood, concrete, glass, brick, porcelain, and slag. The fill generally extended from the ground surface to approximately 6 to 14 feet below the grade (BG), where it was underlain by natural clays. Elevated PID readings and petroleum odors were occasionally noted within the fill, but in isolated and discontinuous pockets. Methane was generally found within the landfill at levels as high as 43% by volume. Groundwater was encountered within the fill matrix.

Contamination was also found on the Hazel Park Bowl and Vacant Parking Lot parcels. The contamination on the Hazel Park Bowl parcel appears to be associated with the historic landfill on the northern portion, and other fills not related to the historic landfill on the southern portion. The contamination on the Vacant Parking Lot parcel appears to be associated with fills related to the demolition of the former residential structures and not the historic landfill. No methane above 0.1% was measured on either the Hazel Park Bowl or Vacant Parking Lot parcels.

Contamination exceeding Part 201 generic residential cleanup criteria (GRCC) measured on the three parcels that comprise the Property are summarized below and on the figures and tables excerpted from their respective BEAs provided in Appendix E.

1.5.1 FORMER HAZEL PARK RACEWAY PARCEL

The following constituents were measured in soil samples at concentrations above Part 201 GRCC: benzene, n-butylbenzene, 1,4-dichlorobenzene, ethylbenzene, naphthalene, n-propylbenzene, 1,2,3-trimethylbenzene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, xylenes,acenaphthene, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, fluoranthene, fluorene, 2-methylnaphthalene, phenanthrene, arsenic, barium, cadmium, copper, lead, mercury, selenium, silver, zinc, polychlorinated biphenyls (PCBs), and chloride.
The following constituents were measured in groundwater samples at concentrations above Part 201 GRCC: benzene, isopropyl benzene, fluoranthene, arsenic, barium, lead, PCBs, and chloride.

Methane was measured in soil borings and soil gas samples at concentrations above the MDEQ draft screening value of 1.25% by volume, which is equal to 25% of the lower explosive limit (LEL). Trichloroethene (TCE) was also measured in soil gas samples beneath the proposed TCCC#2 building at a concentration above the MDEQ’s August 2017 Media-Specific Volatilization to Indoor Air Interim Action Screening Level for nonresidential use (VI Interim Screening Levels).

1.5.2 HAZEL PARK BOWL PARCEL

The following constituents were measured in soil samples at concentrations above Part 201 GRCC: benzene, cis-1,2-dichloroethylene, ethylbenzene, 1,2,4-trimethylbenzene, vinyl chloride, xylenes, benzo(a)pyrene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, fluoranthene, phenanthrene, arsenic, cadmium, copper, lead, mercury, selenium, silver, and zinc. Arsenic, copper, lead, silver, and zinc were measured in a groundwater sample at a concentrations above Part 201 GRCC. No methane was measured above 0.1% by volume in the soil borings.

1.5.3 VACANT PARKING LOT PARCEL

Copper and silver were measured in soil samples at concentrations above Part 201 GRCC. Lead was measured in a groundwater sample at a concentrations above Part 201 GRCC. No methane was measured above 0.1% by volume in the soil boring.

1.6 SUMMARY OF FUNCTIONALLY OBSOLETE AND/OR BLIGHTED CONDITIONS

No functionally obsolete or blighted conditions apply to this Work Plan.

1.7 INFORMATION REQUIRED BY SECTION 15(15) OF THE STATUTE

Required information required by Section 15(15) of the Statute is presented in the following subsections.

1.7.1 SUFFICIENCY OF ELIGIBLE ACTIVITIES

The MSF eligible activities are described in Section 2.2 and include asbestos abatement, demolition, site preparation, and infrastructure improvements. These activities are sufficient to complete the eligible activities for the following reasons:

- Demolition activities are sufficient to remove the existing structures from the Property to facilitate the proposed construction. The demolition activities will also include the required lead and asbestos abatement, as needed.
- Site preparation activities are sufficient to prepare the site for the planned development activities (i.e., new construction).
- The infrastructure improvements are sufficient to complete the eligible activities because they will result in improvements that will directly benefit the Property; however, these improvements will also benefit the public (e.g., improvements along Oakgrove and Couzens Avenue).

1.7.2 NECESSITY OF ELIGIBLE ACTIVITIES

The MSF eligible activities described in Section 2.2 are necessary to make the development financially feasible. The rationale for each eligible activity is presented below:
The demolition activities are needed to complete the eligible activities because the development cannot be constructed without removing the existing features.

The site preparation activities are needed to complete the eligible activities because after demolition, the site must be prepared (e.g., grading, access roads, traffic control, etc.), prior to construction to facilitate the development. A portion of the site grading includes dewatering and filling of the existing onsite storm water pond. Additional geotechnical design and implementation are also necessary to support the foundation system, while reducing the amount of contaminated fill that must be removed and disposed to accommodate the development. The unique special foundation activities are needed to support the design and construction of access buildings over the existing, unsuitable fill materials. Without special foundations, the buildings will likely experience unacceptable levels of settlement and structural instability. Without these activities, significant removal and disposal of contaminated fill would be required to support building construction. Dewatering activities to manage the contaminated water within utility excavations are also necessary to comply with environmental regulations.

The road improvements are needed to complete the eligible activities because the development cannot be completed without the roadway improvements described in this Work Plan.

1.7.3 REASONABLENESS OF COSTS

The project design has undergone multiple iterations focused on saving costs through redesigns and value engineering. The costs for the eligible activities were based on reasonable cost estimates obtained through experience or on pre-construction estimates. The cost estimates for eligible activities were developed by TCC2’s project design team members: Ashley Capital, LLC (owner/managing member), Oliver/Hatcher Construction & Development, Inc. (construction management), Ventura & Associates Architects (architect), and SME (geotechnical, environmental, and construction consulting and engineering).

1.7.4 OVERALL BENEFIT TO THE PUBLIC

The public will benefit through the reuse of approximately 96 acres of underutilized property and creation more than 100 construction jobs and approximately 700 new full and part time jobs. Detail of the public benefit of the project is provided below.

The Property is located in the Core Community of Hazel Park, which is also in the process of being accepted as a Main Street Community in 2015. The proposed project is an excellent opportunity for Hazel Park to revitalize one of its main commercial corridors. The project fits perfectly into Hazel Park’s recently completed Master Plan, a key component of which is improving and diversifying the City’s main corridors.

The Hazel Park Raceway has been one of the City’s main attractions since the 1950s. While the race track historically drew thousands of visitors, attendance has dropped significantly since its high during the mid-70s. Betting has followed a similar negative trend, with live race betting down over 20% from 2012 to 2013, and simulcast betting down 10% over the same period. Keeping this area of the City growing and evolving is key to keeping visitors coming back and retaining residents. This project will directly support this goal by vastly improving a well-known area located along a main thoroughfare. The project will capitalize on one of Hazel Park’s greatest community assets and while it will not directly create public space, this project with its hundreds of jobs, new streetscapes and sidewalks, and improved storm water management will improve this key corridor and support the revitalization of an area that will attract residents and visitors and promote their health, happiness, and well-being.

According to 2009-2013 American Community Survey, median household incomes in the city are lower than those in Michigan and over 25% of the population works in the manufacturing, wholesale trade, and transportation/warehousing fields. This redevelopment will directly benefit the manufacturing/wholesale/
warehousing trade in Hazel Park, thereby impacting a large number of workers in the city and likely increasing their incomes. In addition, the project will bring new workers and residents into the city and spur ancillary commercial development. The development will also have a huge impact on the City because of Hazel Park’s relatively small size with a population of approximately 16,500.

1.7.5 REUSE OF VACANT BUILDINGS AND REDEVELOPMENT OF BLIGHTED PROPERTY

The various Property buildings are no longer actively used and are in disrepair. The buildings will be demolished to support this redevelopment.

1.7.6 JOB CREATION

TCCC Buildings 2 and 3 are expected to be leased to multiple tenants for light manufacturing, warehousing and distribution uses. Building 1 on TCCC1 achieved 80% occupancy prior to the completion of construction and now accommodates three tenants employing over 400 people. The TCCC Building 1 tenants include Amazon (logistics/warehousing/distribution), LG Electronics (advanced battery manufacturing/assembly and engineering, research & development), and Bridgewater Interiors (automotive supply chain warehousing and logistics. Based on the performance of TCCC1, the current estimates are over 100 construction jobs and 613 new FTE jobs, split with about 263 for TCCC#2 and 350 for TCCC#3. The Brownfield Plan listed an estimated 700 new jobs, which were divided between an estimate of 75% FTE and 25% part-time equivalent (PTE). The total estimate of FTE was calculated assuming one PTE equals one-half of one FTE. The average wage for the estimated 613 FTEs is $16/hour.

1.7.7 UNEMPLOYMENT IN THE AREA OF THE PROJECT

According to the United States Census Bureau (2012-2016), the City of Hazel Park unemployment rate was 8.3% versus 8.5% for the State of Michigan. According to the United States Department of Labor Bureau of Labor Statistics (BLS), the State of Michigan unemployment rate in June 2018 was 4.4% (not available for cities with populations less than 25,000), and local estimates for the current unemployment rate in Hazel Park put it at 4.5%.

1.7.8 CONTAMINATION ALLEVIATED BY THE ELIGIBLE ACTIVITIES

Soil and/or groundwater contamination associated with historical landfilling operations is present throughout the Property. The currently exposed surface areas will be covered with impervious surfaces (pavement and buildings) or geotextile fabric covered by clean topsoil and vegetated cover. This will limit human contact/exposure to impacted soil/fill materials and groundwater. Utility lines will be constructed in a manner that will prevent exacerbation of existing contamination and limit infiltration and migration of methane. In addition, the explosion risk associated with methane will be controlled by the inclusion of vapor mitigations systems below each of the buildings.

1.7.9 LEVEL OF PRIVATE SECTOR CONTRIBUTION TO THE PROJECT

TCC2 estimates the investment on the project to be approximately $85 million. Approximately $34 million of that cost is anticipated to be repaid with TIF over approximately 25 years.

1.7.10 CREATION OF ADDITIONAL BROWNFIELDS DUE TO RELOCATION

The project is being constructed on a speculative basis and does not have a committed tenant as of the writing of this Work Plan. This project was planned to create new industrial capacity and is therefore not anticipated to create additional brownfield sites.
1.7.11 PROJECT FINANCIAL DOCUMENTATION

TCC2 has completed the MEDC’s Consideration for Speculative Building Projects form and has received an offer letter dated July 23, 2018 supporting the Brownfield Plan’s MEDC costs estimated at $21.4 million.

1.7.12 OTHER ANTICIPATED DIRECT AND INDIRECT STATE OR LOCAL INCENTIVES

No other state or local incentives, except for reimbursement of eligible environmental and non-environmental brownfield activities, are included in this project.

1.7.13 ADDITIONAL INFORMATION FOR MSF REVIEW

TCC2’s proposed redevelopment of the Property will be transformative to the City of Hazel Park. In addition, the requested TIF capture is only 77% of the available capture, which will create an immediate benefit to the taxing jurisdictions long before the eligible activities are reimbursed (without interest) in approximately 25 years. This Work Plan is consistent with the Brownfield Plan and the information previously provided to the MEDC which was evaluated prior to issuing their July 23, 2018 offer letter for the project.
2. SCOPE OF WORK

The environmental and non-environmental activities are summarized in the following subsections. The cost estimates for the activities are presented on Table 1A, 1B, and 1C. The cost estimates included in this Work Plan were developed by TCC2’s project design team and are based on recent experience with similar activities, estimates from competent contractors, and/or professional experience.

Tax increment revenues generated by redevelopment of the subject Property will be captured and used to reimburse the costs of the eligible activities, pursuant to Act 381 and the terms of the Reimbursement Agreement (Appendix B) between TCC2 and the HPBRA.

2.1 DEQ ELIGIBLE ACTIVITIES

This section of the Plan has been prepared to facilitate DEQ review of the scope of work for environmental activities necessary to support site acquisition and due care activities for the redevelopment of the Property. Environmental activities include site assessments and reporting for due diligence and liability protection (site assessment and BEA activities); due care actions necessary for protection of human health and prevention of exacerbation (due care activities); development/preparation of this Work Plan, and Work Plan implementation. Detailed scopes of work for each of these tasks are presented in the following subsections. Additional detailed budget information, including a breakdown of the activities by categories (e.g., due care, other environmental response activities) is presented in Table 1B.

2.1.1 SITE ASSESSMENT AND BASELINE ENVIRONMENTAL ASSESSMENT (BEA) ACTIVITIES

TCC2 has completed a Phase I ESAs, Phase II ESAs, hazardous material assessments (for parcels with buildings), and BEAs to support Property acquisition. These activities are Work Plan exempt, but are included for completeness.

Due care planning and coordination will include evaluation, design, and planning for integration of contaminant management and the methane mitigation system into project design; project scheduling; and contractor bidding processes. These activities are required to effectively address site environmental conditions in a manner that is protective of human health and the environment and supports TCC2’s compliance with due care obligations under Part 201. These activities are Work Plan exempt, but are included for completeness.

2.1.2 DUE CARE ACTIVITIES

Proposed due care activities consist of installation of methane mitigation and vapor intrusion controls; installation of upgraded storm water and utility lines; installation of dermal contact exposure barriers; prevention of exacerbation of soil impact; contaminated soil removal; management of contaminated groundwater and storm water; field monitoring; project management and coordination; and reporting and documentation. These due care activities are detailed in the following paragraphs.

2.1.2.1 INSTALL METHANE MITIGATION SYSTEMS

Methane has been measured in soil gas above 1.25% of the lower explosive limit (LEL) in multiple locations within or near the footprints of the proposed buildings (both TCCC#2 and TCCC#3). The methane generation is associated with the buried landfill material at the Property. Fire and explosion risks associated with the presence and/or migration of this methane in soil gas will be mitigated by constructing a passive vapor mitigation system below each of the new buildings. In addition, for TCCC#2, TCE was measured in soil gas wells beneath the building above the VI Interim Screening Level.
Although no TCE was measured beneath TCCC#3, the proposed vapor mitigation system will be designed to be protective from vapor intrusion risks from both methane and TCE. The system will consist of four elements: 1) passive sub-slab venting with vent risers, 2) a vapor-barrier system, 3) sub-barrier pressure ports to document post-installation connectivity of the venting systems, and 4) methane alarms installed within building that are connected to the fire alarm system. The proposed vapor mitigation system plan for building TCCC#2 is provided in Appendix F. The vapor mitigation system plan for TCCC#3 is not yet complete, but will be based on the same principals as the TCCC#2 building scaled up to the TCCC#3 building size. The final system design will be evaluated by a professional engineer and sealed. The MDEQ’s Checklist for Reviewing the Design of Passive Mitigation System is also included in Appendix F. Field monitoring and testing of the vapor mitigation system is discussed below in the Field Monitoring of Due Care Activities subsection.

The first element of the methane mitigation system will be a sub-slab passive venting layer. The passive venting layout will consist of low-profile (1-inch by 12-inch), venting strips installed within a porous 4-inch thick 6AA gravel collection layer which will sit atop an approximately six-inch 21AA choke layer. The low-profile venting strips have a similar cross-sectional flow as a three-inch diameter slotted PVC pipe, but allow a thinner venting gravel profile. The collection layer and vent strips will provide pneumatic conductivity beneath the floor while the choke layer will provide stability and prevent both settling of the collection layer and prevent fines from subgrade to clog the pores of the 6AA venting layer. The sub-slab venting system for the TCCC#2 building will be connected to 32 4-inch diameter, rigid, schedule 40 PVC vent risers that terminate above the rooftop and are capped with wind turbines. In areas where the vent risers are visible, they will be labeled “Piping for Vapor Mitigation System – May Contain Methane”. Although TCE was found under a portion of the TCCC#2 building footprint, the labelling is specific to methane because of the higher explosive risk. The wind turbines will encourage a negative pressure gradient when sufficient wind is present. The purpose of the sub-slab venting system will be to provide a preferential pathway for the methane and/or TCE beneath the slab to be channeled and released to the atmosphere through the vent risers. Vent risers will be located on roof at least 20 feet from HVAC intakes and building openings. The preferential pathway for vapor phase diffusion combined with the occasional negative pressure draw from the wind turbines provide a reliable mechanism to prevent methane and/or TCE from building up beneath the buildings.

The second element of the methane mitigation system will be a vapor barrier system to prevent a preferential pathway from being created through the floor slabs and into the buildings. The vapor barrier will consist of three parts. The first will be a methane and TCE resistant vapor barrier, which will be the Perminator EVOH 20-mil vapor barrier or an equivalent alternative. The Perminator EVOH barrier has been tested for methane permeance and has been rated 3.68×10^{-10} m/s by ASTM method D1434. The barrier has also been tested for TCE and has a documented TCE diffusion coefficient of 2.4×10^{-9} m/s by the aqueous phase film permeance test. The vapor barrier will be a prefabricated roll-out membrane that will be sealed with product-specific tapes to the foundation, each membrane sheet, and penetrations. The membrane will be installed in accordance with manufacturer specifications (provided in Appendix F) by a qualified contractor authorized to install the product by the manufacturer. In addition, smoke tests will be completed a minimum of one per 100 linear feet along taped seams and foundation connections, and each penetration. SME’s experienced field staff will observe and document the smoke tests and repairs following the tests. The second and third components of the vapor barrier system will be a geotextile and 21AA layer to protect the vapor barrier and underlying venting strips from the construction process. A Mirafi 600X geotextile will be placed directly on top the Perminator EVOH to protect it and help distribute the loads from construction activity. An 8-inch 21AA layer will be placed on the geotextile and vapor barrier to provide protection from heavy construction traffic. Without the geotextile and 21AA layer, the vapor barrier and venting would need to be installed in small sections with no construction traffic allowed on top of the completed sections. This would approach would significantly increase the cost of the vapor barrier due to the large size and open nature of the buildings.
The third element of the vapor mitigation system will be test ports installed as sealed penetrations in the buildings’ floor slab that will extend to beneath the vapor barrier. They are expected to be constructed of one-inch diameter solid PVC and will allow pressure readings to be obtained from beneath the finished vapor barrier below the floor slab. We anticipate there will be at least 15 test ports distributed throughout the TCCC#2 building. The locations of the test ports are proposed based on the maximum distances from vent stacks and vent strips to evaluate the pressure gradient, methane, and/or other VOC conditions at locations where the venting system is expected to have minimum influence. We will also install test ports at the base of the vent stacks to document the pressure for comparison.

As a final layer of protection, the fourth element of the methane mitigation system will be methane monitors synced with the fire alarm system for the buildings. The methane monitors that will trigger the fire alarm if methane is detected in the enclosed buildings space above 25% of the methane LEL, which is equal to 1.25% by total air volume. A minimum of one monitor will be installed in each subdivided space and/or one per 60,000 square feet for larger open spaces. The final locations will also take into account potential ignition sources based on the final tenant operations. Each of the methane monitors will be labeled as “Methane Mitigation System Monitor”.

The post-construction operations and maintenance will consist of documenting the methane conditions and pressure gradient beneath the floor slabs and at the base of the vent stacks at completion and once per quarter for the first year. After the first year, the conditions will be documented on the following schedule: Year two, three, five, and every three years after that. This Work Plan includes the costs associated with the first five years of operations and maintenance. The monitoring events will be coordinated with windy conditions to evaluate the pressure gradient generated by the wind turbines. If the monitoring event does not document a negative pressure gradient, we will conduct a negative pressure extension test on the vent stacks to document pneumatic connectivity of the system to verify the venting pathway is open and document the minimum negative pressure gradient induced at the vent stack exhaust necessary to generate a sub-slab negative pressure gradient. The key metric for documenting the system is operating as designed will be to document the open preferential pathway for vapor phase diffusion, the primary transport mechanism for methane and VOC migration. The presence of a constant negative pressure gradient is not necessary for the system to function effectively, but documenting the conditions for which this occurs provides additional redundancy and robustness to the vapor mitigation controls for the buildings.

The pipe joints and connections will be sealed. Caulks and other sealants used will appropriate for the other materials used in the system. The joints/connections will be inspected during installation. Pipes or pipe sleeves that cross over or under building footings or grade beams will be evaluated by the structural engineer. All external piping will be pitched per plumbing code and the horizontal vent mat lines are perforated so that condensation that may form in the vertical piping vent mat lines drains to the aggregate below the floor slab. Furthermore, the entire system is above the water table. The vertical pipes will be anchored to the building walls, and the horizontal vent mat lines will be buried in compacted stone preventing the piping or vent mat lines from moving downward. The vent stack pipe locations will comply with MDEQ setback requirements. Finally, the vapor mitigation system will meet applicable fire codes.

Tenants of the buildings will be notified that a methane mitigation system is in operation and will be informed of the locations of the vent risers and methane monitors.

2.1.2.2 STORMWATER AND OTHER UTILITY ENGINEERING CONTROLS

Underground utility piping/conduit will be installed with water-tight/gas-tight seals. In addition, clay or bentonite plugs will be installed in the utility trenches at the Property boundary unless the surrounding soils are similarly permeable and the lack of a preferential pathway is documented. The costs associated with the basic installation of the utility piping are not included in this plan. The additional costs associated with installing water-tight/gas-tight seals on all piping connections are included in this task.
The seals used on the piping connections will prevent impacted groundwater and methane gas from entering the various utility systems. The additional engineering costs to design these upgraded systems are also included in this task.

2.1.2.3 INSTALL EXPOSURE BARRIERS FOR DERMAL CONTACT

Following re-contouring/re-grading of the Property, impacted soil/fill materials will be present at the surface, which poses a dermal contact risk for future site users. Human direct contact exposures to these materials will be mitigated through the installation and maintenance of dermal contact barriers. The building foundations and concrete/asphalt pavement will serve as the exposure barrier across the majority of the Property. In the areas without pavement (i.e., landscaped areas), a geotextile fabric overlain by clean topsoil and vegetated cover will be used as a dermal contact barrier. We evaluated capping the impacted soil with either a minimum of 12 inches of clean soil or a geotextile fabric and a minimum of 4 inches of clean soil. In both cases, the cover material would be seeded with vegetated cover. The planned final grades will accommodate approximately 4 inches of clean soil for landscaping. We found that the 12-inch cap option would require grades to be cut an additional 8-inches and those disposal costs would far exceed the costs of the geotextile fabric. In addition, we concluded that the geotextile fabric would be more protective because it will prevent mixing of the underlying landfill material and the newly placed clean soil. The geotextile fabric will be placed on the exposed impacted soil/fill materials to demarcate the clean fill from the impacted material, provide a visual indication of erosion of the barrier, provide physical protection against exposure to the underlying impacted material, and help stabilize the weak/unstable fill material. The geotextile will be covered with 4 inches of clean topsoil that will support grass/plant growth. The surface will be covered with native/hybrid grasses to create a vegetated cover. The eligible costs will be the material and labor to install the geotextile fabric and 4 inches of clean soil with vegetated cover.

2.1.2.4 EXACERBATION CONTROLS FOR CONTAMINATED SOIL

During environmental activities, soil accumulated on construction equipment and dust generated by construction activities will need to be managed to prevent spreading of contamination off the Property and onto adjoining roadways and properties. Sediment management practices such as street sweeping, dust suppression, track out pads will be employed as necessary. Dust suppression methods, such wetting dry soils, will be employed as necessary.

2.1.2.5 CONTAMINATED SOIL REMOVAL

Excess soil will be generated as part of the site grading and utility installation activities. In addition, soil that is unsuitable for construction will be excavated. This is anticipated to include contaminated topsoil and muck from the storm water pond on TCCC#3. The material that is unsuitable for use under the new foundation/footings and cannot be reused on-site will require disposal at a Type II landfill. This soil is contaminated with various metals, VOCs, and polynuclear aromatic hydrocarbons (PAHs) at concentrations above Part 201 GRCC and the landfill material is mixed with significant debris. It is estimated that approximately 16,000 cubic yards and 50,000 cubic yards of excess soil will be excavated, transported, and disposed off-site from TCCC#2 and TCCC#3, respectively, at a cost of approximately $35 per cubic yard. The excavation costs are included in the non-environmental costs for reimbursement. The transportation and disposal costs are included in the environmental costs for reimbursement.

2.1.2.6 DEWATERING EFFLUENT TREATMENT AND DISPOSAL

During construction activities, impacted soil/fill materials will be exposed to storm water. In addition, based on the presence of shallow groundwater, it is anticipated that impacted groundwater may pool in excavations. Management of potentially impacted water collected in excavations or on the Property may be required to prevent spread of contaminated water off-site. Additionally, wash water generated when on-site equipment is cleaned/washed prior to leaving the Site will also need to be managed to prevent the spread of contamination.
Impacted storm and wash water that does not drain back into the site soils will be collected and pumped into a frac tank for holding until it can be characterized and properly disposed. It is anticipated that the dewatering effluent from excavations will be discharged under permit into the sanitary sewer system. Initial testing has indicated that carbon treatment of the water will be required prior to discharge into the sanitary sewer. The discharge permit from the Great Lakes Water Authority (GLWA) will also require testing and monitoring of the effluent to document compliance. Representative samples of the water to be discharged to the sanitary sewer will be collected and characterized as required by GLWA.

2.1.2.7 FIELD MONITORING OF DUE CARE ACTIVITIES

Field monitoring to document the utility upgrades, exposure barrier placement, contaminated soil disposal, and dewatering effluent treatment/disposal will be conducted periodically throughout the redevelopment activities. This field monitoring will also include monitoring, management, and coordination of the vapor mitigation system installation activities. Specifically, the environmental consultant will observe, document, and provide third-party Quality Assurance/Quality Control (QA/QC) inspections during the system installation to confirm that it is built to the project and manufacturer design specifications. The QA/QC program during installation will include 1) visually inspecting the installation process, 2) conducting smoke tests to identify and repair leaks in the spray-applied application, and 3) documenting the construction of the protection layer and any repairs that are necessary during that process. We will also perform field monitoring to document the topsoil segregation from the landfill material, general grading of the exposed landfill, the activities associated with upgrading the utilities to mitigate groundwater and methane infiltration, the construction of the landfill cap, track-in/track-out controls, and the O&M program for the vapor mitigation system discussed below. We will summarize the field inspections, QA/QC, and O&M activities as part of the project due care documentation.

2.1.2.8 WASTE CHARACTERIZATION TESTING

Representative samples of the material to be transported for off-site disposal will be collected and characterized for disposal. It is anticipated that each sample will be subjected to Toxicity Characteristic Leachate Procedure (TCLP), ignitability, and reactivity testing. The actual suite of applicable tests parameters may vary based on initial characterization results and/or disposal facility requirements. Appropriate documentation needed to obtain approval for disposal of soil at a licensed landfill will be prepared and submitted to the landfill selected for disposal. This task also includes sampling to comply with the GLWA sanitary discharge permit for dewatering effluent.

2.1.2.9 PROJECT COORDINATION AND MANAGEMENT

The due care activities involved in redeveloping this Property are numerous and complex. They will involve multiple contractors, consultants, and engineers. Monitoring, managing, and coordinating the planning, field activities, and responses to unexpected situations present significant challenges and require significant levels of effort to ensure compliance with project goals, regulatory requirements, system designs, construction restrictions, and site safety protocols. SME will provide project coordination and management of the due care activities.

2.1.2.10 REPORTING AND DOCUMENTATION

At the conclusion of redevelopment activities, SME will prepare reports to document the environmental due care activities. These reports will include a Summary of Environmental Activities Report and a Plan to Comply with Due Care (PCDC). The Summary of Environmental Activities will document the implementation of the activities described in this Work Plan, summarize additional environmental data collected during the construction phase, document the as-built conditions of the engineering controls installed as part of the project, and provide a record of the conditions encountered during the construction phase and remaining after completion. The Plan to Comply with Due Care will document how TCC2 will prevent unacceptable exposures and mitigate exacerbation of existing contamination following redevelopment.
The plan will also include the methane vapor mitigation system field inspections, system tests/inspections, QA/QC, and an operation and maintenance plan to document the continued effectiveness of the methane vapor mitigation system.

2.1.3 INTEREST

Interest costs are not included.

2.1.4 BROWNFIELD PLAN AND/OR WORK PLAN PREPARATION

This Work Plan and included Brownfield Plan were prepared under the direction of the HPBRA. Costs for preparing this documents are eligible for reimbursement using local and school tax increment revenue captured under Act 381. The costs have been split between non-environmental and environmental activities.

2.1.5 BROWNFIELD PLAN AND/OR WORK PLAN IMPLEMENTATION

Considerable effort will be required to compile, review, verify eligibility, and approve many individual invoices and pay requests prior to submission to the City of Hazel Park for payment using their TIR. Each invoice and pay request will have to be allocated to the appropriate Work Plan task(s), and task and project budgets will have to carefully tracked. Accumulated invoices, cost tracking tables, and other documentation will be collated into a form and format suitable for submission to the City of Hazel Park for reimbursement.

2.2 MSF ELIGIBLE ACTIVITIES

This section of the Work Plan has been prepared to facilitate MEDC/MSF review of the scope of work for non-environmental activities necessary to support redevelopment of the Property. As with most previously-used industrial/commercial sites, the Property retains residual features of its previous use that are not compatible with the proposed redeveloped use. These residual features include outdated/unusable buildings and associated pavement, man-made topography not suitable for the future use, and unsuitable soil/landfill fill materials. Non-environmental activities include demolition, site preparation, infrastructure improvements, and development/preparation of this Work Plan. Detailed scopes of work for each of these tasks are presented in the following subsections. Additional detailed budget information, including a breakdown of the activities by categories (e.g., due care, other environmental response activities) is presented in Table 1A.

2.2.1 DEMOLITION

The majority of the Property is occupied by the former racetrack and associated buildings including a 5/8-mile track, grandstand, club house, administrative building, security building, tote board buildings, and 22 buildings formerly used for stables/tack rooms, maintenance operations, and storage (see Figure 2). The former bowling alley building also remains on the Property. In addition, paved parking areas and access drives are present across the Property. These buildings and associated asphalt and concrete pavement will be demolished to facilitate construction of the new buildings. This task also includes the demolition and abandonment of existing utilities that need to be removed to accommodate the development.

2.2.2 LEAD ABATEMENT

Abatement of lead-containing building materials will be completed prior to building demolition.
2.2.3 ASBESTOS ABATEMENT

Abatement of asbestos containing building materials will be completed prior to building demolition.

2.2.4 INFRASTRUCTURE IMPROVEMENTS

The project requires a portion Couzens Avenue (approximately 45,960 square feet) and Oakgrove Avenue (approximately 28,050 square feet) to be upgraded to a Class A road to support the truck traffic associated with the project. The proposed traffic would deteriorate these two roads in their current form. Couzens Avenue will be upgraded from the northern to the southern limits of TCCC#2. Oakgrove Avenue will be upgrade along the southern portion of TCCC#3 to Dequindre. Costs associated with construction testing for these activities are also included in this task.

2.2.5 SITE PREPARATION

Significant site preparation activities are necessary to facilitate the redevelopment project. Geotechnical evaluation and civil engineering site design will be required to address the variable density soil present on the Property. Areas of unsuitable fill area present in the areas of the new proposed building footings/foundations. This material must be removed and properly disposed prior to site reconstruction. In addition, special foundation systems/approached will be required due to the extensive presence of fill material in the area of buildings. Finally, significant grading will need to be done both before the main site development activities to deal with the man-made topography (e.g., racetrack and associated retention pond) and following the main site preparation activities to balance and grade the Property to meet the proposed site elevations.

2.2.5.1 GEOTECHNICAL AND CIVIL ENGINEERING

Results of subsurface evaluations of the Property have shown that approximately 7 feet to 14 feet of sand fill containing refuse material (wood, concrete, brick, porcelain, and slag) is present across the Property. Additional geotechnical evaluation and engineering is needed to support design of the new footings/foundations that will be placed under the new buildings.

2.2.5.2 GENERAL CONDITIONS

Prior to the start of eligible activities, the Property will be secured to prevent unauthorized parties from entering the Property during construction activities. This will include installation of a temporary security fence and gates. In addition, temporary construction facilities (trailer/office) will be installed on the Property. This task also includes costs for contractor mobilization and demobilization.

2.2.5.3 MASS GRADING AND SUBGRADE PREPARATION

Following site demolition activities, the Property will need to be cut/filled and graded to meet construction requirements for the building, parking areas, and access drives. In addition, variations in Property topography (racetrack, retention pond, etc.) will require re-contouring of the remaining areas of the Property. The entire Property will be graded and balanced as needed before foundations and utilities can be installed. This task also includes draining and filling the large storm water retention pond on the TCCC#3 portion of the Property. The construction plans are provided in Appendix H.

2.2.5.4 EXCAVATION OF UNSUITABLE SOIL

The construction team is carrying an allowance for the excavation of unsuitable soils from pavement and utility excavations. The areas will be proof-rolled and the areas that fail and can’t be reinforced with geo-grid, will be undercut. When possible, the soils will be recompacted as used as engineered fill. However, when the soil cannot be recompacted, it will require disposal at a Type II landfill. This is anticipated to
also include contaminated topsoil and muck from the storm water pond on TCCC#3 that will be disposed. The excavation costs are included in the non-environmental costs for reimbursement. The transportation and disposal costs are included in the environmental costs for reimbursement (Section 2.1.1.2).

2.2.5.5 SURVEYING AND STAKING

Costs associated with staking and surveying are included in this task. Topographic surveys were necessary to develop cut and fill plans for the site grading activities. A final site topographic survey will be completed following site preparation activities.

2.2.5.6 SPECIAL FOUNDATIONS (GEOPIERS)

Results of geotechnical evaluations have shown that the soil/fill materials present on the Property have variable density, ranging from very loose to dense. The presence of unconsolidated and refuse materials presents significant challenges for construction of the buildings and poses a higher risk of settlement. Because the buildings will be constructed over fill/waste material, which will be left in place to limit project costs, a more complex foundation design will be needed to prevent foundation settlement, cracking, and damage of underlying methane mitigation systems.

The fill material beneath the proposed buildings ranges from 7 to 14 feet BG. To accommodate traditional foundations and floor slabs, this material would need to be removed and disposed at a licensed landfill and the material replaced with properly compacted engineered fill. In addition, the excavated footprints would need to extend out from the foundation edges at a one to one ratio to the excavation depth to properly support the foundation loads. We estimated the soil disposal costs and backfill replacement costs for this approach at over $7,000,000 for the TCCC#2 building alone. Although the removal and disposal of these unsuitable soils and replacement costs would be an eligible activity, this approach is not the most effective use of developer or tax payer funds. Therefore, soil improvement with geopiers in the areas of the buildings and geogrid under the pavement were selected as a more economical approach.

The buildings will be supported by a geopiers. Geopiers consist of aggregate piers installed on a grid that provide load bearing capacity while also improving the surrounding soils during installation. The method does not generate spoils when the holes for the piers are installed using a reverse auger method. Therefore, this methodology also alleviate the need to excavate and dispose of contaminated fill during the foundation construction process. The geopiers will create a suitable platform to construct the building upon using traditional spread footers in the overlying fill above the geopiers. The geopiers will then be bridged with a fill layer and traditional spread footer foundations will be constructed on top of the engineered geopier system. The additional geotechnical and structural engineering costs to design the foundation system and the increased costs to install the foundation system, above those required for an undeveloped site, are included in this task. Since the building will still use traditional spread footer foundations on top of the geopier system, the incremental cost to address the unsuitable fill is the entire cost of the geopier system itself. The geotechnical reports for the TCCC#2 and TCCC#3 buildings are provided in Appendix G.

2.2.5.7 GEOGRID UNDER PAVEMENTS

For the reasons discussed above, the fill material is also unsuitable to support pavements at the Property. The presence of unconsolidated and refuse materials presents poses a high risk of settlement beneath paved areas. TCC2 evaluated removing, disposing, and replacing sufficient fill material to create a pavement and underlying aggregate cross-section sufficient to support the proposed pavements and compared that option to the installation of reinforcing geogrid beneath the pavements to obtain sufficient load support. TCC2’s design team found that the cost to use geogrid to reinforce the existing subgrade was significantly less expensive than removing and replacing the contaminated fill necessary to support the pavements. This task includes the costs for the acquisition and placement of the geogrid. This does
not exclude the need for undercuts in soil areas deemed structurally unsuitable even with geogrid, but will greatly limit the need for undercuts in the pavement areas.

2.2.5.8 FIELD MONITORING AND CONSTRUCTION TESTING FOR ELIGIBLE ACTIVITIES

The construction testing and field oversight of the eligible activities such as mass grading of landfill material, draining and filling the storm water retention pond, installation of the geopier foundation system, undercuts, and geogrids in the pavement areas is an eligible activity.

2.2.5.9 PROJECT COORDINATION AND MANAGEMENT

The non-environmental activities involved in redeveloping this Property are numerous and complex. They will involve multiple contractors, consultants, and engineers. Monitoring, managing, and coordinating the planning, field activities, and responses to unexpected situations present significant challenges and require significant levels of effort to ensure compliance with project goals, regulatory requirements, system designs, construction restrictions, and site safety protocols. SME will provide project coordination and management of the above referenced eligible activities.

2.2.6 INTEREST

Interest costs are not included.

2.2.7 BROWNFIELD PLAN AND/OR WORK PLAN PREPARATION

This Work Plan and included Brownfield Plan were prepared under the direction of the HPBRA. Costs for preparing this documents are eligible for reimbursement using local and school tax increment revenue captured under Act 381. The costs have been split between non-environmental and environmental activities.

2.2.8 BROWNFIELD PLAN AND/OR WORK PLAN IMPLEMENTATION

Considerable effort will be required to compile, review, verify eligibility, and approve many individual invoices and pay requests prior to submission to the City of Hazel Park for payment using their TIR. Each invoice and pay request will have to be allocated to the appropriate Work Plan task(s), and task and project budgets will have to carefully tracked. Accumulated invoices, cost tracking tables, and other documentation will be collated into a form and format suitable for submission to the City of Hazel Park for reimbursement.

2.3 LOCAL ONLY ELIGIBLE ACTIVITIES

No local activities are included in this Work Plan except if Department Specific Activities occur prior to approval of the Work Plan, those activities will be funded with local only TIR.

2.4 ELIGIBLE ACTIVITIES AND SCHEDULE

The estimated eligible activities included in this Work Plan to be reimbursed with local and state school TIRs are $34,105,355, split between TCCC#2 at $15,152,250 and TCCC#3 at $18,953,105. Of this total amount in eligible activities, the non-environmental portion of TCCC#2 and TCCC#3 are estimated at approximately $10,168,298 and $11,214,562, respectively. The environmental portion of TCCC#2 and TCCC#3 are estimated at approximately $4,983,952 and $7,738,543, respectively. These totals include a 15% contingency of the costs of tasks related to, or dependent upon, field activities or site conditions, wherein reasonable cost estimate uncertainty exists.
The total costs for the non-environmental and environmental eligible activities along with an approximate schedule for implementation are summarized on Table 1A (non-environmental) and Table 1B (environmental). The total eligible activities are summarized on Table 1C. The estimated taxable values, tax increment revenues to be captured, and the impact on taxing jurisdictions are presented in Table 2A (TCCC#2), Table 2B (TCCC#3), and Table 2C (Total).
FIGURES
FIGURE 1: PROPERTY LOCATION MAP
FIGURE 2: PROPERTY FEATURES DIAGRAM
TABLES

TABLE 1A: NON-ENVIRONMENTAL ELIGIBLE ACTIVITY ESTIMATES
TABLE 1B: ENVIRONMENTAL ELIGIBLE ACTIVITY ESTIMATES
TABLE 1C: TOTAL NON-ENVIRONMENTAL AND ENVIRONMENTAL ELIGIBLE ACTIVITY ESTIMATES

TABLE 2A: IMPACT TO TAXING JURISDICTIONS SUMMARY – TCCC#2
TABLE 2B: IMPACT TO TAXING JURISDICTIONS SUMMARY – TCCC#3
TABLE 2C: IMPACT TO TAXING JURISDICTIONS SUMMARY – TCCC#2&3
APPENDICES
APPENDIX A: BROWNFIELD PLAN AND APPROVAL RESOLUTIONS
APPENDIX B: REIMBURSEMENT AGREEMENT
APPENDIX C: SITE PLAN
APPENDIX D: LEGAL DESCRIPTIONS
APPENDIX E: ENVIRONMENTAL CONDITIONS DOCUMENTATION
APPENDIX F: VAPOR MITIGATION PLAN DETAILS
APPENDIX G: GEOTECHNICAL REPORTS
APPENDIX H: TCCC#2 CONSTRUCTION PLANS
APPENDIX A
BROWNFIELD PLAN AND APPROVAL RESOLUTIONS
APPENDIX B
REIMBURSEMENT AGREEMENT
APPENDIX E
ENVIRONMENTAL CONDITIONS DOCUMENTATION
APPENDIX F
VAPOR MITIGATION PLAN DETAILS
APPENDIX G
GEOTECHINICAL REPORTS
APPENDIX H
TCCC#2 CONSTRUCTION PLANS